aic.burg.wge {tswge} | R Documentation |
AR Model Identification using Burg Estimates
Description
AR model identification using either AIC, AICC, or BIC
Usage
aic.burg.wge(x, p = 1:5, type = "aic")
Arguments
x |
Realization to be analyzed |
p |
Range of p values to be considered |
type |
Type of model identification criterion: aic, aicc, or bic |
Value
type |
Criterion used: aic (default), aicc, or bic |
min_value |
Value of the minimized criterion |
p |
AR order for selected model |
phi |
AR parameter estimates for selected model |
vara |
White noise variance estimate for selected model |
Author(s)
Wayne Woodward
References
"Applied Time Series Analysis with R, 2nd edition" by Woodward, Gray, and Elliott
Examples
data(fig3.18a)
aic.burg.wge(fig3.18a,p=1:5,type='aicc')
[Package tswge version 2.1.0 Index]