impute_modelled_data {tsrobprep} | R Documentation |
Impute modelled missing time series data
Description
Returns a matrix or a list of matrices with imputed missing values or outliers. As argument the function requires an object of class "tsrobprep" and the quantiles to be imputed.
Usage
impute_modelled_data(object, tau = NULL)
Arguments
object |
an object of class "tsrobprep" that is an output of function model_missing_data. |
tau |
the quantile(s) of the missing values to be imputed. tau should be a subset of the quantile values present in the "tsrobprep" object. By default all quantiles present in the object are used. |
Value
A matrix or a list of matrices with imputed missing values or
outliers.
References
Narajewski M, Kley-Holsteg J, Ziel F (2021). “tsrobprep — an R package for robust preprocessing of time series data.” SoftwareX, 16, 100809. doi: 10.1016/j.softx.2021.100809.
See Also
model_missing_data, detect_outliers, auto_data_cleaning
Examples
## Not run:
model.miss <- model_missing_data(
data = GBload[,-1], S = c(48,7*48),
no.of.last.indices.to.fix = dim(GBload)[1], consider.as.missing = 0,
min.val = 0
)
model.miss$estimated.models
model.miss$replaced.indices
new.GBload <- impute_modelled_data(model.miss)
## End(Not run)