ts_maintune {tspredit} | R Documentation |
Time Series Tune
Description
Time Series Tune
Usage
ts_maintune(
input_size,
base_model,
folds = 10,
preprocess = list(daltoolbox::ts_norm_gminmax()),
augment = list(ts_aug_none())
)
Arguments
input_size |
input size for machine learning model |
base_model |
base model for tuning |
folds |
number of folds for cross-validation |
preprocess |
list of preprocessing methods |
augment |
data augmentation method |
Value
a ts_maintune
object.
Examples
library(daltoolbox)
data(sin_data)
ts <- ts_data(sin_data$y, 10)
samp <- ts_sample(ts, test_size = 5)
io_train <- ts_projection(samp$train)
io_test <- ts_projection(samp$test)
tune <- ts_maintune(input_size=c(3:5), base_model = ts_elm(), preprocess = list(ts_norm_gminmax()))
ranges <- list(nhid = 1:5, actfun=c('purelin'))
# Generic model tunning
model <- fit(tune, x=io_train$input, y=io_train$output, ranges)
prediction <- predict(model, x=io_test$input[1,], steps_ahead=5)
prediction <- as.vector(prediction)
output <- as.vector(io_test$output)
ev_test <- evaluate(model, output, prediction)
ev_test
[Package tspredit version 1.0.777 Index]