ts_fil_lowess {tspredit} | R Documentation |
Lowess Smoothing
Description
It is a smoothing method that preserves the primary trend of the original observations and is used to remove noise and spikes in a way that allows data reconstruction and smoothing.
Usage
ts_fil_lowess(f = 0.2)
Arguments
f |
smoothing parameter. The larger this value, the smoother the series will be. This provides the proportion of points on the plot that influence the smoothing. |
Value
a ts_fil_lowess
object.
Examples
# time series with noise
library(daltoolbox)
data(sin_data)
sin_data$y[9] <- 2*sin_data$y[9]
# filter
filter <- ts_fil_lowess(f = 0.2)
filter <- fit(filter, sin_data$y)
y <- transform(filter, sin_data$y)
# plot
plot_ts_pred(y=sin_data$y, yadj=y)
[Package tspredit version 1.0.777 Index]