| floss_cac {tsmp} | R Documentation | 
FLOSS - Corrected Arc Counts
Description
Computes the arc count with edge and 'online' correction (CAC).
Usage
floss_cac(.mp, data_window, exclusion_zone = NULL)
Arguments
| .mp | a  | 
| data_window | an  | 
| exclusion_zone | if a  | 
Details
Original paper suggest using the classic statistical-process-control heuristic to set a threshold where a semantic change may occur in CAC. This may be useful in real-time implementation as we don't know in advance the number of domain changes to look for. Please check original paper (1).
Value
Returns the input .mp object a new name cac with the corrected arc count and cac_final
the combination of cac after repeated calls of floss().
References
- Gharghabi S, Ding Y, Yeh C-CM, Kamgar K, Ulanova L, Keogh E. Matrix Profile VIII: Domain Agnostic Online Semantic Segmentation at Superhuman Performance Levels. In: 2017 IEEE International Conference on Data Mining (ICDM). IEEE; 2017. p. 117-26. 
Website: https://sites.google.com/site/onlinesemanticsegmentation/
Website: http://www.cs.ucr.edu/~eamonn/MatrixProfile.html
See Also
Other Semantic Segmentations: 
floss_extract(),
floss(),
fluss_cac(),
fluss_extract(),
fluss_score(),
fluss()
Examples
data <- mp_fluss_data$tilt_abp$data[1:1000]
new_data <- mp_fluss_data$tilt_abp$data[1001:1010]
w <- 10
mp <- tsmp(data, window_size = w, verbose = 0)
data_window <- 1000
mp <- stompi_update(mp, new_data, data_window)
mp <- floss_cac(mp, data_window)