| floss {tsmp} | R Documentation |
Fast Low-cost Online Semantic Segmentation (FLOSS)
Description
Fast Low-cost Online Semantic Segmentation (FLOSS)
Usage
floss(
.mp,
new_data,
data_window,
threshold = 1,
exclusion_zone = NULL,
chunk_size = NULL,
keep_cac = TRUE
)
Arguments
.mp |
a |
new_data |
a |
data_window |
an |
threshold |
a |
exclusion_zone |
if a |
chunk_size |
an |
keep_cac |
a |
Value
Returns the input .mp object new names: cac the corrected arc count, cac_finalthe
combination of cac after repeated calls of floss(), floss with the location of semantic
changes and floss_vals with the normalized arc count value of the semantic change positions.
References
Gharghabi S, Ding Y, Yeh C-CM, Kamgar K, Ulanova L, Keogh E. Matrix Profile VIII: Domain Agnostic Online Semantic Segmentation at Superhuman Performance Levels. In: 2017 IEEE International Conference on Data Mining (ICDM). IEEE; 2017. p. 117-26.
Website: https://sites.google.com/site/onlinesemanticsegmentation/
Website: http://www.cs.ucr.edu/~eamonn/MatrixProfile.html
See Also
Other Semantic Segmentations:
floss_cac(),
floss_extract(),
fluss_cac(),
fluss_extract(),
fluss_score(),
fluss()
Examples
data <- mp_fluss_data$tilt_abp$data[1:1000]
new_data <- mp_fluss_data$tilt_abp$data[1001:1010]
new_data2 <- mp_fluss_data$tilt_abp$data[1011:1020]
w <- 80
mp <- tsmp(data, window_size = w, verbose = 0)
data_window <- 1000
mp <- floss(mp, new_data, data_window)
mp <- floss(mp, new_data2, data_window)