| TARMAur.test {tseriesTARMA} | R Documentation |
Unit root supLM test for an integrated MA versus a stationary TARMA process
Description
Implements a supremum Lagrange Multiplier unit root test for the null hypiythesis of a integrated MA process versus a stationary TARMA process.
Usage
TARMAur.test(x, pa = 0.25, pb = 0.75, thd.range, method = "ML", ...)
Arguments
x |
A univariate vector or time series. |
pa |
Real number in |
pb |
Real number in |
thd.range |
Vector of optional user defined threshold range. If missing then |
method |
Fitting method to be passed to |
... |
Additional arguments to be passed to |
Details
Implements an asymptotic supremum Lagrange Multiplier test to test an integrate MA(1) specification versus a
stationary TARMA(1,1) specification. This is an asymptotic test and the value of the test statistic has to be compared with the critical
values tabulated in (Chan et al. 2024) and available in supLMQur.
The relevant critical values are automatically shown upon printing the test, see print.TARMAtest.
Value
An object of class TARMAtest with components:
statisticThe value of the supLM statistic.
parameterA named vector:
thresholdis the value that maximises the Lagrange Multiplier values.test.vVector of values of the LM statistic for each threshold given in
thd.range.thd.rangeRange of values of the threshold.
fit.ARMAThe null model: IMA(1) fit over
x.sigma2Estimated innovation variance from the IMA fit.
data.nameA character string giving the name of the data.
p.valueThe p-value of the test. It is
NULLfor the asymptotic test.methodA character string indicating the type of test performed.
dThe delay parameter.
paLower threshold quantile.
Author(s)
Simone Giannerini, simone.giannerini@unibo.it
Greta Goracci, greta.goracci@unibz.it
References
-
Chan K, Giannerini S, Goracci G, Tong H (2024). “Testing for threshold regulation in presence of measurement error.” Statistica Sinica, 34(3). https://doi.org/10.5705/ss.202022.0125.
See Also
TARMAur.test.B for the bootstrap version of the test.
print.TARMAtest for the print method.
Examples
## a TARMA(1,1,1,1)
set.seed(123)
x1 <- TARMA.sim(n=100, phi1=c(0.5,-0.5), phi2=c(0.0,0.8), theta1=0.5, theta2=0.5, d=1, thd=0.2)
TARMAur.test(x1)
## a IMA(1,1)
x2 <- arima.sim(n=100, model=list(order = c(0,1,1),ma=0.6))
TARMAur.test(x2)