TARMAur.test.B {tseriesTARMA} | R Documentation |
Unit root supLM test for an integrated MA versus a stationary TARMA process
Description
Implements a supremum Lagrange Multiplier unit root test for the null hypothesis of a integrated MA process versus a stationary TARMA process.
Usage
TARMAur.test.B(
x,
B = 1000,
pa = 0.25,
pb = 0.75,
thd.range,
method = "ML",
btype = c("wb.r", "wb.n", "iid"),
...
)
Arguments
x |
A univariate vector or time series. |
B |
Integer. Number of bootstrap resamples. Defaults to 1000. |
pa |
Real number in |
pb |
Real number in |
thd.range |
Vector of optional user defined threshold range. If missing then |
method |
Fitting method to be passed to |
btype |
Bootstrap type, can be one of |
... |
Additional arguments to be passed to |
Details
Implements the bootstrap version of TARMAur.test
the supremum Lagrange Multiplier test
to test an integrate MA(1) specification versus a stationary TARMA(1,1) specification.
The option btype
specifies the type of bootstrap as follows:
wb.r
Residual wild bootstrap with Rademacher auxiliary distribution. See (Giannerini et al. 2022).
wb.n
Residual wild bootstrap with Normal auxiliary distribution. See (Giannerini et al. 2022).
iid
Residual iid bootstrap. See (Goracci et al. 2021).
Value
An object of class TARMAtest
with components:
statistic
The value of the supLM statistic.
parameter
A named vector:
threshold
is the value that maximises the Lagrange Multiplier values.test.v
Vector of values of the LM statistic for each threshold given in
thd.range
.thd.range
Range of values of the threshold.
fit.ARMA
The null model: IMA(1) fit over
x
.sigma2
Estimated innovation variance from the IMA fit.
data.name
A character string giving the name of the data.
p.value
The bootstrap p-value of the test.
method
A character string indicating the type of test performed.
d
The delay parameter.
pa
Lower threshold quantile.
Tb
The bootstrap null distribution.
Author(s)
Simone Giannerini, simone.giannerini@unibo.it
Greta Goracci, greta.goracci@unibz.it
References
-
Chan K, Giannerini S, Goracci G, Tong H (2024). “Testing for threshold regulation in presence of measurement error.” Statistica Sinica, 34(3). https://doi.org/10.5705/ss.202022.0125.
See Also
TARMAur.test
for the asymptotic version of the test. print.TARMAtest
for the print method.
Examples
## a TARMA(1,1,1,1)
set.seed(123)
x1 <- TARMA.sim(n=100, phi1=c(0.5,-0.5), phi2=c(0.0,0.8), theta1=0.5, theta2=0.5, d=1, thd=0.2)
TARMAur.test.B(x1, B=100) # B=100 for speedup
## a IMA(1,1)
x2 <- arima.sim(n=100, model=list(order = c(0,1,1),ma=0.6))
TARMAur.test.B(x2, B=100) # B=100 for speedup