| TARMA.test {tseriesTARMA} | R Documentation |
ARMA versus TARMA supLM test for nonlinearity
Description
Implements a supremum Lagrange Multiplier test for a ARMA specification versus a TARMA specification. Includes the AR versus TAR test.
Usage
TARMA.test(
x,
pa = 0.25,
pb = 0.75,
ar.ord,
ma.ord,
ma.fixed = TRUE,
d,
thd.range,
method = "CSS-ML",
...
)
Arguments
x |
A univariate time series. |
pa |
Real number in |
pb |
Real number in |
ar.ord |
Order of the AR part. |
ma.ord |
Order of the MA part. |
ma.fixed |
Logical. Only applies to testing ARMA vs TARMA. If |
d |
Delay parameter. Defaults to |
thd.range |
Vector of optional user defined threshold range. If missing then |
method |
Fitting method to be passed to |
... |
Additional arguments to be passed to |
Details
Implements an asymptotic supremum Lagrange Multiplier test to test an ARMA specification versus a TARMA specification.
If ma.fixed=TRUE (the default), the AR parameters are tested whereas the MA parameters are fixed. If ma.fixed=FALSE both the AR and the MA parameters are tested.
This is an asymptotic test and the value of the test statistic has to be compared with the critical values tabulated in (Goracci et al. 2021) and (Andrews 2003).
If ma.ord=0 then the AR versus TAR test is used. Note that when method='CSS', this is equivalent to TAR.test, which uses least squares.
Value
An object of class TARMAtest with components:
statisticThe value of the supLM statistic.
parameterA named vector:
thresholdis the value that maximises the Lagrange Multiplier values.test.vVector of values of the LM statistic for each threshold given in
thd.range.thd.rangeRange of values of the threshold.
fit.ARMAThe null model: ARMA fit over
x.sigma2Estimated innovation variance from the ARMA fit.
data.nameA character string giving the name of the data.
propProportion of values of the series that fall in the lower regime.
p.valueThe p-value of the test. It is
NULLfor the asymptotic test.methodA character string indicating the type of test performed.
dThe delay parameter.
paLower threshold quantile.
dfreeEffective degrees of freedom. It is the number of tested parameters.
Author(s)
Simone Giannerini, simone.giannerini@unibo.it
Greta Goracci, greta.goracci@unibz.it
References
-
Goracci G, Giannerini S, Chan K, Tong H (2023). “Testing for threshold effects in the TARMA framework.” Statistica Sinica, 33(3), 1879-1901. https://doi.org/10.5705/ss.202021.0120.
-
Andrews DWK (2003). “Tests for Parameter Instability and Structural Change with Unknown Change Point: A Corrigendum.” Econometrica, 71(1), 395-397. doi:10.1111/1468-0262.00405.
See Also
TAR.test.B for the bootstrap version of the test. TARMAGARCH.test
for the robust version of the test with respect to GARCH innovations. TARMA.sim to simulate from a TARMA process.
Examples
## a TARMA(1,1,1,1) where the threshold effect is on the AR parameters
set.seed(123)
x1 <- TARMA.sim(n=100, phi1=c(0.5,-0.5), phi2=c(0.0,0.8), theta1=0.5, theta2=0.5, d=1, thd=0.2)
TARMA.test(x1, ar.ord=1, ma.ord=1, d=1)
TARMA.test(x1, ar.ord=1, ma.ord=1, d=1, ma.fixed=FALSE) # full TARMA test
## a TARMA(1,1,1,1) where the threshold effect is on the MA parameters
set.seed(212)
x2 <- TARMA.sim(n=100, phi1=c(0.5,0.2), phi2=c(0.5,0.2), theta1=0.6, theta2=-0.6, d=1, thd=0.2)
TARMA.test(x2, ar.ord=1, ma.ord=1, d=1)
TARMA.test(x2, ar.ord=1, ma.ord=1, d=1, ma.fixed=FALSE) # full TARMA test
## a ARMA(1,1)
x3 <- arima.sim(n=100, model=list(order = c(1,0,1),ar=0.5, ma=0.5))
TARMA.test(x3, ar.ord=1, ma.ord=1, d=1)
## a TAR(1,1)
x4 <- TARMA.sim(n=100, phi1=c(0.5,-0.5), phi2=c(0.0,0.8), theta1=0, theta2=0, d=1, thd=0.2)
TARMA.test(x4, ar.ord=1, ma.ord=0, d=1)
## a AR(1)
x5 <- arima.sim(n=100, model=list(order = c(1,0,0),ar=0.5))
TARMA.test(x5, ar.ord=1, ma.ord=0, d=1)