TAR.test {tseriesTARMA} | R Documentation |
AR versus TARMA supLM robust test for nonlinearity
Description
Implements a heteroskedasticity robust supremum Lagrange Multiplier test for a AR specification versus a TAR specification. Includes the classic (non robust) AR versus TAR test.
Usage
TAR.test(x, pa = 0.25, pb = 0.75, ar.ord, d = 1)
Arguments
x |
A univariate time series. |
pa |
Real number in |
pb |
Real number in |
ar.ord |
Order of the AR part. |
d |
Delay parameter. Defaults to |
Details
Implements a heteroskedasticity robust asymptotic supremum Lagrange Multiplier test to test an AR specification versus a TAR specification.
This is an asymptotic test and the value of the test statistic has to be compared with the critical values tabulated
in (Goracci et al. 2021) or (Andrews 2003).
Both the non-robust supLM
and the robust supLMh
statistics are returned.
Value
An object of class TARMAtest
with components:
statistic
A named vector with the values of the classic
supLM
and robustsupLMh
statistics.parameter
A named vector:
threshold
is the value that maximises the Lagrange Multiplier values.test.v
Matrix of values of the LM statistic for each threshold given in
thd.range
.thd.range
Range of values of the threshold.
fit
The null model: AR fit over
x
.sigma2
Estimated innovation variance from the AR fit.
data.name
A character string giving the name of the data.
prop
Proportion of values of the series that fall in the lower regime.
p.value
The p-value of the test. It is
NULL
for the asymptotic test.method
A character string indicating the type of test performed.
d
The delay parameter.
pa
Lower threshold quantile.
dfree
Effective degrees of freedom. It is the number of tested parameters.
Author(s)
Simone Giannerini, simone.giannerini@unibo.it
Greta Goracci, greta.goracci@unibz.it
References
-
Goracci G, Giannerini S, Chan K, Tong H (2023). “Testing for threshold effects in the TARMA framework.” Statistica Sinica, 33(3), 1879-1901. https://doi.org/10.5705/ss.202021.0120.
-
Andrews DWK (2003). “Tests for Parameter Instability and Structural Change with Unknown Change Point: A Corrigendum.” Econometrica, 71(1), 395-397. doi:10.1111/1468-0262.00405.
See Also
TAR.test.B
for the bootstrap version of the test.
TARMA.test
for the ARMA vs TARMA asymptotic version of the test, which includes also the AR vs TAR test, with different defaults.
TARMAGARCH.test
for the robust version of the ARMA vs TARMA test with respect to
GARCH innovations.
TARMA.sim
to simulate from a TARMA process.
Examples
set.seed(123)
## a TAR(1,1) ---------------
x1 <- TARMA.sim(n=100, phi1=c(0.5,-0.5), phi2=c(0.0,0.8), theta1=0, theta2=0, d=1, thd=0.2)
TAR.test(x1, ar.ord=1, d=1)
## a AR(1) ----------------
x2 <- arima.sim(n=100, model=list(order=c(1,0,0), ar=0.5))
TAR.test(x2, ar.ord=1, d=1)