| TAR.test {tseriesTARMA} | R Documentation |
AR versus TARMA supLM robust test for nonlinearity
Description
Implements a heteroskedasticity robust supremum Lagrange Multiplier test for a AR specification versus a TAR specification. Includes the classic (non robust) AR versus TAR test.
Usage
TAR.test(x, pa = 0.25, pb = 0.75, ar.ord, d = 1)
Arguments
x |
A univariate time series. |
pa |
Real number in |
pb |
Real number in |
ar.ord |
Order of the AR part. |
d |
Delay parameter. Defaults to |
Details
Implements a heteroskedasticity robust asymptotic supremum Lagrange Multiplier test to test an AR specification versus a TAR specification.
This is an asymptotic test and the value of the test statistic has to be compared with the critical values tabulated
in (Goracci et al. 2021) or (Andrews 2003).
Both the non-robust supLM and the robust supLMh statistics are returned.
Value
An object of class TARMAtest with components:
statisticA named vector with the values of the classic
supLMand robustsupLMhstatistics.parameterA named vector:
thresholdis the value that maximises the Lagrange Multiplier values.test.vMatrix of values of the LM statistic for each threshold given in
thd.range.thd.rangeRange of values of the threshold.
fitThe null model: AR fit over
x.sigma2Estimated innovation variance from the AR fit.
data.nameA character string giving the name of the data.
propProportion of values of the series that fall in the lower regime.
p.valueThe p-value of the test. It is
NULLfor the asymptotic test.methodA character string indicating the type of test performed.
dThe delay parameter.
paLower threshold quantile.
dfreeEffective degrees of freedom. It is the number of tested parameters.
Author(s)
Simone Giannerini, simone.giannerini@unibo.it
Greta Goracci, greta.goracci@unibz.it
References
-
Goracci G, Giannerini S, Chan K, Tong H (2023). “Testing for threshold effects in the TARMA framework.” Statistica Sinica, 33(3), 1879-1901. https://doi.org/10.5705/ss.202021.0120.
-
Andrews DWK (2003). “Tests for Parameter Instability and Structural Change with Unknown Change Point: A Corrigendum.” Econometrica, 71(1), 395-397. doi:10.1111/1468-0262.00405.
See Also
TAR.test.B for the bootstrap version of the test.
TARMA.test for the ARMA vs TARMA asymptotic version of the test, which includes also the AR vs TAR test, with different defaults.
TARMAGARCH.test for the robust version of the ARMA vs TARMA test with respect to
GARCH innovations.
TARMA.sim to simulate from a TARMA process.
Examples
set.seed(123)
## a TAR(1,1) ---------------
x1 <- TARMA.sim(n=100, phi1=c(0.5,-0.5), phi2=c(0.0,0.8), theta1=0, theta2=0, d=1, thd=0.2)
TAR.test(x1, ar.ord=1, d=1)
## a AR(1) ----------------
x2 <- arima.sim(n=100, model=list(order=c(1,0,0), ar=0.5))
TAR.test(x2, ar.ord=1, d=1)