| TAR.test.B {tseriesTARMA} | R Documentation |
AR versus TAR bootstrap supLM test for nonlinearity
Description
Implements various bootstrap supremum Lagrange Multiplier tests for a AR specification versus a TAR specification.
Usage
TAR.test.B(
x,
B = 1000,
pa = 0.25,
pb = 0.75,
ar.ord,
d = 1,
btype = c("iid", "wb.h", "wb.r", "wb.n"),
...
)
Arguments
x |
A univariate time series. |
B |
Integer. Number of bootstrap resamples. Defaults to 1000. |
pa |
Real number in |
pb |
Real number in |
ar.ord |
Order of the AR part. |
d |
Delay parameter. Defaults to |
btype |
Bootstrap type, can be one of |
... |
Additional arguments to be passed to |
Details
Implements the bootstrap version of TAR.test the supremum Lagrange Multiplier test to test an AR specification versus a TARMA specification.
The option btype specifies the type of bootstrap as follows:
iidResidual iid bootstrap. See (Giannerini et al. 2022), (Giannerini et al. 2023).
wb.hStochastic permutation of (Hansen 1996).
wb.rResidual wild bootstrap with Rademacher auxiliary distribution. See (Giannerini et al. 2022), (Giannerini et al. 2023).
wb.nResidual wild bootstrap with Normal auxiliary distribution. See (Giannerini et al. 2022), (Giannerini et al. 2023).
Value
A list of class htest with components:
statisticThe value of the supLM statistic.
parameterA named vector:
thresholdis the value that maximises the Lagrange Multiplier values.test.vVector of values of the LM statistic for each threshold given in
thd.range.thd.rangeRange of values of the threshold.
fitThe null model: AR fit over
x.sigma2Estimated innovation variance from the AR fit.
data.nameA character string giving the name of the data.
propProportion of values of the series that fall in the lower regime.
p.valueThe bootstrap p-value of the test.
methodA character string indicating the type of test performed.
TbThe bootstrap null distribution.
Author(s)
Simone Giannerini, simone.giannerini@unibo.it
Greta Goracci, greta.goracci@unibz.it
References
-
Giannerini S, Goracci G, Rahbek A (2022). “The validity of bootstrap testing in the threshold framework.” doi:10.48550/ARXIV.2201.00028, https://arxiv.org/abs/2201.00028.
-
Giannerini S, Goracci G, Rahbek A (2023). “The validity of bootstrap testing in the threshold framework.” Journal of Econometrics, in press. https://doi.org/10.1016/j.jeconom.2023.01.004.
-
Goracci G, Giannerini S, Chan K, Tong H (2023). “Testing for threshold effects in the TARMA framework.” Statistica Sinica, 33(3), 1879-1901. https://doi.org/10.5705/ss.202021.0120.
-
Giannerini S, Goracci G (2021). “Estimating and Forecasting with TARMA models.” University of Bologna.
-
Hansen BE (1996). “Inference When a Nuisance Parameter Is Not Identified Under the Null Hypothesis.” Econometrica, 64(2), 413–430. ISSN 00129682, 14680262, https://doi.org/10.2307/2171789.
See Also
TAR.test for the heteroskedastic robust asymptotic test. TARMAGARCH.test for the
robust version of the test with respect to GARCH innovations. TARMA.sim to simulate from a TARMA process.
Examples
## a TAR(1,1) where the threshold effect is on the AR parameters
set.seed(123)
x1 <- TARMA.sim(n=100, phi1=c(0.5,-0.5), phi2=c(0.0,0.8), theta1=0, theta2=0, d=1, thd=0.2)
TAR.test.B(x1, ar.ord=1, d=1)
TAR.test.B(x1, ar.ord=1, d=1, btype='wb.r')
TAR.test.B(x1, ar.ord=1, d=1, btype='wb.h')
## a AR(1)
x2 <- arima.sim(n=100, model=list(order = c(1,0,0),ar=0.5))
TAR.test.B(x2, ar.ord=1, d=1)
TAR.test.B(x2, ar.ord=1, d=1, btype='wb.r')
TAR.test.B(x2, ar.ord=1, d=1, btype='wb.h')