TAR.test.B {tseriesTARMA} | R Documentation |
AR versus TAR bootstrap supLM test for nonlinearity
Description
Implements various bootstrap supremum Lagrange Multiplier tests for a AR specification versus a TAR specification.
Usage
TAR.test.B(
x,
B = 1000,
pa = 0.25,
pb = 0.75,
ar.ord,
d = 1,
btype = c("iid", "wb.h", "wb.r", "wb.n"),
...
)
Arguments
x |
A univariate time series. |
B |
Integer. Number of bootstrap resamples. Defaults to 1000. |
pa |
Real number in |
pb |
Real number in |
ar.ord |
Order of the AR part. |
d |
Delay parameter. Defaults to |
btype |
Bootstrap type, can be one of |
... |
Additional arguments to be passed to |
Details
Implements the bootstrap version of TAR.test
the supremum Lagrange Multiplier test to test an AR specification versus a TARMA specification.
The option btype
specifies the type of bootstrap as follows:
iid
Residual iid bootstrap. See (Giannerini et al. 2022), (Giannerini et al. 2023).
wb.h
Stochastic permutation of (Hansen 1996).
wb.r
Residual wild bootstrap with Rademacher auxiliary distribution. See (Giannerini et al. 2022), (Giannerini et al. 2023).
wb.n
Residual wild bootstrap with Normal auxiliary distribution. See (Giannerini et al. 2022), (Giannerini et al. 2023).
Value
A list of class htest
with components:
statistic
The value of the supLM statistic.
parameter
A named vector:
threshold
is the value that maximises the Lagrange Multiplier values.test.v
Vector of values of the LM statistic for each threshold given in
thd.range
.thd.range
Range of values of the threshold.
fit
The null model: AR fit over
x
.sigma2
Estimated innovation variance from the AR fit.
data.name
A character string giving the name of the data.
prop
Proportion of values of the series that fall in the lower regime.
p.value
The bootstrap p-value of the test.
method
A character string indicating the type of test performed.
Tb
The bootstrap null distribution.
Author(s)
Simone Giannerini, simone.giannerini@unibo.it
Greta Goracci, greta.goracci@unibz.it
References
-
Giannerini S, Goracci G, Rahbek A (2022). “The validity of bootstrap testing in the threshold framework.” doi:10.48550/ARXIV.2201.00028, https://arxiv.org/abs/2201.00028.
-
Giannerini S, Goracci G, Rahbek A (2023). “The validity of bootstrap testing in the threshold framework.” Journal of Econometrics, in press. https://doi.org/10.1016/j.jeconom.2023.01.004.
-
Goracci G, Giannerini S, Chan K, Tong H (2023). “Testing for threshold effects in the TARMA framework.” Statistica Sinica, 33(3), 1879-1901. https://doi.org/10.5705/ss.202021.0120.
-
Giannerini S, Goracci G (2021). “Estimating and Forecasting with TARMA models.” University of Bologna.
-
Hansen BE (1996). “Inference When a Nuisance Parameter Is Not Identified Under the Null Hypothesis.” Econometrica, 64(2), 413–430. ISSN 00129682, 14680262, https://doi.org/10.2307/2171789.
See Also
TAR.test
for the heteroskedastic robust asymptotic test. TARMAGARCH.test
for the
robust version of the test with respect to GARCH innovations. TARMA.sim
to simulate from a TARMA process.
Examples
## a TAR(1,1) where the threshold effect is on the AR parameters
set.seed(123)
x1 <- TARMA.sim(n=100, phi1=c(0.5,-0.5), phi2=c(0.0,0.8), theta1=0, theta2=0, d=1, thd=0.2)
TAR.test.B(x1, ar.ord=1, d=1)
TAR.test.B(x1, ar.ord=1, d=1, btype='wb.r')
TAR.test.B(x1, ar.ord=1, d=1, btype='wb.h')
## a AR(1)
x2 <- arima.sim(n=100, model=list(order = c(1,0,0),ar=0.5))
TAR.test.B(x2, ar.ord=1, d=1)
TAR.test.B(x2, ar.ord=1, d=1, btype='wb.r')
TAR.test.B(x2, ar.ord=1, d=1, btype='wb.h')