update_ade {tsensembler} | R Documentation |
Updating an ADE model
Description
update_ade is a generic function that combines
update_base_models
, update_ade_meta
,
and update_weights
.
Usage
update_ade(object, newdata, num_cores = 1)
## S4 method for signature 'ADE'
update_ade(object, newdata, num_cores = 1)
Arguments
object |
a |
newdata |
data used to update the ADE model. This should be
the data used to initially train the models (training set), together
with new observations (for example, validation set). Each model
is retrained using |
num_cores |
A numeric value to specify the number of cores used to train base and meta models. num_cores = 1 leads to sequential training of models. num_cores > 1 splits the training of the base models across num_cores cores. |
See Also
ADE-class
for building an ADE model;
update_weights
for updating the weights of the ensemble (without
retraining the models); update_base_models
for updating the
base models of an ensemble; and update_ade_meta
for
updating the meta-models of an ADE model.
Other updating models:
update_ade_meta()
,
update_weights()
Examples
specs <- model_specs(
learner = c("bm_svr", "bm_glm", "bm_mars"),
learner_pars = NULL
)
data("water_consumption")
dataset <- embed_timeseries(water_consumption, 5)
# toy size for checks
train <- dataset[1:300, ]
validation <- dataset[301:400, ]
test <- dataset[401:500, ]
model <- ADE(target ~., train, specs)
preds_val <- predict(model, validation)
model <- update_ade(model, rbind.data.frame(train, validation))
preds_test <- predict(model, test)