rlassoHAC {tsapp} | R Documentation |
rlassoHAC
performs Lasso estimation under heteroscedastic and autocorrelated non-Gaussian disturbances.
Description
rlassoHAC
performs Lasso estimation under heteroscedastic and autocorrelated non-Gaussian disturbances.
Usage
rlassoHAC(
x,
y,
kernel = "Bartlett",
bands = 10,
bns = 10,
lns = NULL,
nboot = 5000,
post = TRUE,
intercept = TRUE,
model = TRUE,
X.dependent.lambda = FALSE,
c = 2,
gamma = NULL,
numIter = 15,
tol = 10^-5,
threshold = NULL,
...
)
Arguments
x |
Regressors (vector, matrix or object can be coerced to matrix). |
y |
Dependent variable (vector, matrix or object can be coerced to matrix). |
kernel |
Kernel function, choose between "Truncated", "Bartlett" (by default), "Parzen", "Tukey-Hanning", "Quadratic Spectral". |
bands |
Bandwidth parameter with default bands=10. |
bns |
Block length with default bns=10. |
lns |
Number of blocks with default lns = floor(T/bns). |
nboot |
Number of bootstrap iterations with default nboot=5000. |
post |
Logical. If TRUE (default), post-Lasso estimation is conducted, i.e. a refit of the model with the selected variables. |
intercept |
Logical. If TRUE, intercept is included which is not penalized. |
model |
Logical. If TRUE (default), model matrix is returned. |
X.dependent.lambda |
Logical, TRUE, if the penalization parameter depends on the design of the matrix x. FALSE (default), if independent of the design matrix. |
c |
Constant for the penalty, default value is 2. |
gamma |
Constant for the penalty, default gamma=0.1/log(T) with T=data length. |
numIter |
Number of iterations for the algorithm for the estimation of the variance and data-driven penalty, ie. loadings. |
tol |
Constant tolerance for improvement of the estimated variances. |
threshold |
Constant applied to the final estimated lasso coefficients. Absolute values below the threshold are set to zero. |
... |
further parameters |
Value
rlassoHAC returns an object of class "rlasso". An object of class "rlasso" is a list containing at least the following components:
coefficients |
Parameter estimates. |
beta |
Parameter estimates (named vector of coefficients without intercept). |
intercept |
Value of the intercept. |
index |
Index of selected variables (logical vector). |
lambda |
Data-driven penalty term for each variable, product of lambda0 (the penalization parameter) and the loadings. |
lambda0 |
Penalty term. |
loadings |
Penalty loadings, vector of lenght p (no. of regressors). |
residuals |
Residuals, response minus fitted values. |
sigma |
Root of the variance of the residuals. |
iter |
Number of iterations. |
call |
Function call. |
options |
Options. |
model |
Model matrix (if model = TRUE in function call). |
Source
Victor Chernozhukov, Chris Hansen, Martin Spindler (2016). hdm: High-Dimensional Metrics, R Journal, 8(2), 185-199. URL https://journal.r-project.org/archive/2016/RJ-2016-040/index.html.
Examples
set.seed(1)
T = 100 #sample size
p = 20 # number of variables
b = 5 # number of variables with non-zero coefficients
beta0 = c(rep(10,b), rep(0,p-b))
rho = 0.1 #AR parameter
Cov = matrix(0,p,p)
for(i in 1:p){
for(j in 1:p){
Cov[i,j] = 0.5^(abs(i-j))
}
}
C <- chol(Cov)
X <- matrix(rnorm(T*p),T,p)%*%C
eps <- arima.sim(list(ar=rho), n = T+100)
eps <- eps[101:(T+100)]
Y = X%*%beta0 + eps
reg.lasso.hac1 <- rlassoHAC(X, Y,"Bartlett") #lambda is chosen independent of regressor
#matrix X by default.
bn = 10 # block length
bwNeweyWest = 0.75*(T^(1/3))
reg.lasso.hac2 <- rlassoHAC(X, Y,"Bartlett", bands=bwNeweyWest, bns=bn, nboot=5000,
X.dependent.lambda = TRUE, c=2.7)