tsal {tsallisqexp} | R Documentation |
The Tsallis Distribution
Description
Density function, distribution function, quantile function, random generation.
Usage
dtsal(x, shape=1, scale=1, q=tsal.q.from.shape(shape),
kappa=tsal.kappa.from.ss(shape,scale),
log=FALSE)
ptsal(x, shape=1, scale=1, q=tsal.q.from.shape(shape),
kappa=tsal.kappa.from.ss(shape,scale),
lower.tail=TRUE, log.p=FALSE)
qtsal(p, shape=1, scale=1, q=tsal.q.from.shape(shape),
kappa=tsal.kappa.from.ss(shape,scale),
lower.tail=TRUE, log.p=FALSE)
rtsal(n, shape=1, scale=1, q=tsal.q.from.shape(shape),
kappa=tsal.kappa.from.ss(shape,scale))
tsal.mean(shape, scale, q=tsal.q.from.shape(shape),
kappa=tsal.kappa.from.ss(shape,scale))
Arguments
x |
vector of quantiles. |
q |
vector of quantiles or a shape parameter. |
p |
vector of probabilities. |
n |
number of observations. If |
shape |
shape parameter. |
scale , kappa |
scale parameters. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
Details
The Tsallis distribution is defined by the following density
f(x) = \frac{1}{ \kappa}(1-(1-q)x/\kappa)^{1/(1-q)}
for all x
.
It is convenient to introduce a re-parameterization
shape = -1/(1-q)
, scale = shape*\kappa
which makes the relationship to the Pareto clearer, and eases estimation.
If we have both shape/scale and q/kappa parameters, the latter over-ride.
Value
dtsal
gives the density,
ptsal
gives the distribution function,
qtsal
gives the quantile function, and
rtsal
generates random deviates.
tsal.mean
computes the expected value.
The length of the result is determined by n
for
rtsal
, and is the maximum of the lengths of the
numerical parameters for the other functions.
Author(s)
Cosma Shalizi (original R code), Christophe Dutang (R packaging)
References
Maximum Likelihood Estimation for q-Exponential (Tsallis) Distributions, http://bactra.org/research/tsallis-MLE/ and https://arxiv.org/abs/math/0701854.
Examples
#####
# (1) density function
x <- seq(0, 5, length=24)
cbind(x, dtsal(x, 1/2, 1/4))
#####
# (2) distribution function
cbind(x, ptsal(x, 1/2, 1/4))