tsal.tail {tsallisqexp} | R Documentation |
The Tsallis Distribution with a censoring parameter (tail-conditional)
Description
Density function, distribution function, quantile function, random generation.
Usage
dtsal.tail(x, shape=1,scale=1, q=tsal.q.from.shape(shape),
kappa=tsal.kappa.from.ss(shape,scale), xmin=0,
log=FALSE)
ptsal.tail(x, shape=1, scale=1, q=tsal.q.from.shape(shape),
kappa=tsal.kappa.from.ss(shape,scale), xmin=0,
lower.tail=TRUE, log.p=FALSE)
qtsal.tail(p, shape=1, scale=1, q=tsal.q.from.shape(shape),
kappa=tsal.kappa.from.ss(shape,scale), xmin=0,
lower.tail=TRUE, log.p=FALSE)
rtsal.tail(n, shape=1, scale=1, q=tsal.q.from.shape(shape),
kappa=tsal.kappa.from.ss(shape,scale), xmin=0)
Arguments
x |
vector of quantiles. |
q |
vector of quantiles or a shape parameter. |
p |
vector of probabilities. |
n |
number of observations. If |
shape |
shape parameter. |
scale , kappa |
scale parameters. |
xmin |
minimum x-value. |
log , log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are
|
Details
The Tsallis distribution with a censoring parameter is the distribution of
a Tsallis distributed random variable conditionnaly on .
The density is defined as
for all where
is the appropriate constant so that the integral
of the density equals 1. That is
is the survival probability of the classic Tsallis
distribution at
.
It is convenient to introduce a re-parameterization
,
which makes the relationship to the Pareto clearer, and eases estimation.
If we have both shape/scale and q/kappa parameters, the latter over-ride.
Value
dtsal.tail
gives the density,
ptsal.tail
gives the distribution function,
qtsal.tail
gives the quantile function, and
rtsal.tail
generates random deviates.
The length of the result is determined by n
for
rtsal.tail
, and is the maximum of the lengths of the
numerical parameters for the other functions.
Author(s)
Cosma Shalizi (original R code), Christophe Dutang (R packaging)
References
Maximum Likelihood Estimation for q-Exponential (Tsallis) Distributions, http://bactra.org/research/tsallis-MLE/ and https://arxiv.org/abs/math/0701854.
Examples
#####
# (1) density function
x <- seq(0, 5, length=24)
cbind(x, dtsal(x, 1/2, 1/4))
#####
# (2) distribution function
cbind(x, ptsal(x, 1/2, 1/4))