A B C D F G I K L M N O P R S T U V Z
tsDyn-package | Getting started with the tsDyn package |
AAR | Additive nonlinear autoregressive model |
aar | Additive nonlinear autoregressive model |
accuracy_stat | Forecasting accuracy measures. |
accuracy_stat.default | Forecasting accuracy measures. |
accuracy_stat.pred_roll | Forecasting accuracy measures. |
addRegime | addRegime test |
AIC.nlar | NLAR methods |
ar_mean | Long-term mean of an AR(p) process |
ar_mean.linear | Long-term mean of an AR(p) process |
ar_mean.lstar | Long-term mean of an AR(p) process |
ar_mean.setar | Long-term mean of an AR(p) process |
as.data.frame.llar | Locally linear model |
as.data.frame.rank.select | Selection of the cointegrating rank with Information criterion. |
autopairs | Bivariate time series plots |
autotriples | Trivariate time series plots |
autotriples.rgl | Interactive trivariate time series plots |
availableModels | Available models |
barry | Time series of PPI used as example in Bierens and Martins (2010) |
BBCTest | Test of unit root against SETAR alternative |
BIC.nlar | NLAR methods |
charac_root | Characteristic roots of the AR coefficients |
charac_root.nlar | Characteristic roots of the AR coefficients |
coef.nlar | NLAR methods |
coefA | Extract cointegration parameters A, B and PI |
coefA.ca.jo | Extract cointegration parameters A, B and PI |
coefA.VECM | Extract cointegration parameters A, B and PI |
coefB | Extract cointegration parameters A, B and PI |
coefB.ca.jo | Extract cointegration parameters A, B and PI |
coefB.VECM | Extract cointegration parameters A, B and PI |
coefPI | Extract cointegration parameters A, B and PI |
d2sigmoid | sigmoid functions |
delta | delta test of conditional independence |
delta.lin | delta test of linearity |
delta.lin.test | delta test of linearity |
delta.test | delta test of conditional independence |
deviance.nlar | NLAR methods |
dsigmoid | sigmoid functions |
fevd.nlVar | Forecast Error Variance Decomposition |
fitted | fitted method for objects of class nlVar, i.e. VAR and VECM models. |
fitted.nlar | NLAR methods |
fitted.nlVar | fitted method for objects of class nlVar, i.e. VAR and VECM models. |
getTh | Extract threshold(s) coefficient |
getTh.default | Extract threshold(s) coefficient |
GIRF | Generalized Impulse response Function (GIRF) |
GIRF.linear | Generalized Impulse response Function (GIRF) |
GIRF.nlVar | Generalized Impulse response Function (GIRF) |
GIRF.setar | Generalized Impulse response Function (GIRF) |
IIPUs | US monthly industrial production from Hansen (1999) |
irf.ar | Impulse response function |
irf.linear | Impulse response function |
irf.nlVar | Impulse response function |
irf.setar | Impulse response function |
irf.TVAR | Impulse response function |
irf.TVECM | Impulse response function |
irf.VAR | Impulse response function |
irf.VECM | Impulse response function |
isLinear | isLinear |
KapShinTest | Test of unit root against SETAR alternative with |
lags.select | Selection of the lag with Information criterion. |
LINEAR | Linear AutoRegressive models |
linear | Linear AutoRegressive models |
linear.boot | Simulation and bootstrap of Threshold Autoregressive model (SETAR) |
linear.sim | Simulation and bootstrap of Threshold Autoregressive model (SETAR) |
lineVar | Multivariate linear models: VAR and VECM |
llar | Locally linear model |
llar.fitted | Locally linear model |
llar.predict | Locally linear model |
logLik.nlVar | Extract Log-Likelihood |
logLik.VAR | Extract Log-Likelihood |
logLik.VECM | Extract Log-Likelihood |
LSTAR | Logistic Smooth Transition AutoRegressive model |
lstar | Logistic Smooth Transition AutoRegressive model |
m.unrate | Monthly US unemployment |
MakeThSpec | Specification of the threshold search |
makeThSpec | Specification of the threshold search |
MAPE | Mean Absolute Percent Error |
MAPE.default | Mean Absolute Percent Error |
MAPE.nlar | NLAR methods |
mse | Mean Square Error |
mse.default | Mean Square Error |
mse.nlar | NLAR methods |
nlar-methods | NLAR methods |
NNET | Neural Network nonlinear autoregressive model |
nnetTs | Neural Network nonlinear autoregressive model |
OlsTVAR | Multivariate Threshold Vector Autoregressive model |
plot-methods | Plotting methods for SETAR and LSTAR subclasses |
plot.aar | Additive nonlinear autoregressive model |
plot.GIRF_df | Generalized Impulse response Function (GIRF) |
plot.llar | Locally linear model |
plot.lstar | Plotting methods for SETAR and LSTAR subclasses |
plot.nlar | NLAR methods |
plot.setar | Plotting methods for SETAR and LSTAR subclasses |
plot_ECT | Plot the Error Correct Term (ECT) response |
predict | Predict method for objects of class "nlar". |
predict.nlar | Predict method for objects of class "nlar". |
predict.TVAR | Predict method for objects of class "VAR", "VECM" or "TVAR" |
predict.VAR | Predict method for objects of class "VAR", "VECM" or "TVAR" |
predict.VECM | Predict method for objects of class "VAR", "VECM" or "TVAR" |
predict_rolling | Rolling forecasts |
predict_rolling.nlVar | Rolling forecasts |
print.aar | Additive nonlinear autoregressive model |
print.linear | Linear AutoRegressive models |
print.llar | Locally linear model |
print.rank.select | Selection of the cointegrating rank with Information criterion. |
print.rank.test | Test of the cointegrating rank |
print.summary.linear | Linear AutoRegressive models |
rank.select | Selection of the cointegrating rank with Information criterion. |
rank.test | Test of the cointegrating rank |
regime | Extract a variable showing the regime |
regime.default | Extract a variable showing the regime |
regime.lstar | Extract a variable showing the regime |
resample_vec | Resampling schemes |
residuals.nlar | NLAR methods |
resVar | Residual variance |
selectLSTAR | Automatic selection of model hyper-parameters |
selectNNET | Automatic selection of model hyper-parameters |
selectSETAR | Automatic selection of SETAR hyper-parameters |
selectSetar | Automatic selection of SETAR hyper-parameters |
selectsetar | Automatic selection of SETAR hyper-parameters |
SETAR | Self Threshold Autoregressive model |
setar | Self Threshold Autoregressive model |
setar.boot | Simulation and bootstrap of Threshold Autoregressive model (SETAR) |
setar.sim | Simulation and bootstrap of Threshold Autoregressive model (SETAR) |
setarTest | Test of linearity against threshold (SETAR) |
setartest | Test of linearity against threshold (SETAR) |
setarTest_IIPUs_results | Results from the setarTest, applied on Hansen (1999) data |
sigmoid | sigmoid functions |
STAR | STAR model |
star | STAR model |
summary.aar | Additive nonlinear autoregressive model |
summary.linear | Linear AutoRegressive models |
summary.nlar | NLAR methods |
summary.rank.select | Selection of the cointegrating rank with Information criterion. |
summary.rank.test | Test of the cointegrating rank |
summary.setar | Self Threshold Autoregressive model |
toLatex.nlar | NLAR methods |
toLatex.setar | Latex representation of fitted setar models |
tsDyn | Getting started with the tsDyn package |
TVAR | Multivariate Threshold Vector Autoregressive model |
TVAR.boot | Simulation of a multivariate Threshold Autoregressive model (TVAR) |
TVAR.LRtest | Test of linearity |
TVAR.sim | Simulation of a multivariate Threshold Autoregressive model (TVAR) |
TVECM | Threshold Vector Error Correction model (VECM) |
TVECM.boot | Simulation and bootstrap a VECM or bivariate TVECM |
TVECM.HStest | Test of linear cointegration vs threshold cointegration |
TVECM.SeoTest | No cointegration vs threshold cointegration test |
TVECM.sim | Simulation and bootstrap a VECM or bivariate TVECM |
UsUnemp | US unemployment series used in Caner and Hansen (2001) |
VAR.boot | Simulate or bootstrap a VAR model |
VAR.sim | Simulate or bootstrap a VAR model |
VARrep | VAR representation |
VARrep.VAR | VAR representation |
VARrep.VECM | VAR representation |
VECM | Estimation of Vector error correction model (VECM) |
VECM.boot | Simulation and bootstrap a VECM or bivariate TVECM |
VECM.sim | Simulation and bootstrap a VECM or bivariate TVECM |
VECM_symbolic | Virtual VECM model |
zeroyld | zeroyld time series |
zeroyldMeta | zeroyld time series |