trunc_est {truncnormbayes} | R Documentation |
Estimate truncated normal distribution
Description
Estimates the posterior modes for the mean (mu) and standard deviation (sigma) of the underlying normal distribution, given truncated data with known truncation point(s).
Usage
trunc_est(x, a, b, mu_start = 0, sigma_start = 1, ci_level = 0.95, ...)
Arguments
x |
Vector of observations from truncated normal. |
a |
Left truncation limit. |
b |
Right truncation limit. |
mu_start |
Initial value for mu. |
sigma_start |
Initial value for sigma. |
ci_level |
Confidence level of the interval – gives a 100*ci_level% symmetric HPD interval (defaults to 95%). |
... |
Parameters to pass to |
Value
A list with two elements:
- stats
A data frame with two rows and the columns
param
(mu
,sd
),mode
(posterior mode),mean
(posterior mean),median
(posterior median),se
(standard error),ci_lower
(lower CI bound),ci_upper
(upper CI bound),rhat
.- fit
A
stanfit
object (the result of fitting the model).
References
Zhou X, Giacometti R, Fabozzi FJ, Tucker AH (2014). “Bayesian estimation of truncated data with applications to operational risk measurement.” Quantitative Finance, 14(5), 863–888. doi:10.1080/14697688.2012.752103.
Stan Development Team (2022). “RStan: the R interface to Stan.” R package version 2.21.5. https://mc-stan.org.
Examples
set.seed(22)
x <- truncnorm::rtruncnorm(100, a = -1, b = 2, mean = 0.5, sd = 0.5)
trunc_est(x, a = -1, b = 2)