| lt.fit {truncSP} | R Documentation |
Function for fitting LT
Description
Function to find LT estimates of the regression coefficients for regression models with truncated response variables. Uses optim. Intended to be called through lt, not on its own, since lt also transforms data into the correct form etc.
Usage
lt.fit(formula, mf, point, direction, bet, cl, cu, ...)
Arguments
formula |
a symbolic description of the model to be estimated |
mf |
the |
point |
point of truncation |
direction |
direction of truncation |
bet |
starting values to be used by |
cl |
lower threshold value to be used, number or numeric vector of length 1. (See |
cu |
upper threshold value to be used, number or numeric vector of length 1. (See |
... |
additional arguments to be passed to |
Value
a list with components:
startcoef |
the starting values of the regression coefficients used by |
coefficients |
the named vector of coefficients |
counts |
number of iterations used by |
convergence |
from |
message |
from |
residuals |
the residuals of the model |
df.residual |
the residual degrees of freedom |
fitted.values |
the fitted values |
Author(s)
Anita Lindmark and Maria Karlsson
See Also
Examples
require(utils)
##Model frame
n <- 10000
x <- rnorm(n,0,2)
y <- 2+x+4*rnorm(n)
d <- data.frame(y=y, x=x)
dl0 <- subset(d, y>0)
mf <- model.frame(y~x, data=dl0)
##Starting values and threshold values
lmmod <- lm(data=mf)
bet <- lmmod$coef
bet <- matrix(bet)
cl <- sqrt(deviance(lmmod)/df.residual(lmmod))
cu <- 2*cl
str(lt. <- lt.fit(y~x,mf,point=0,direction="left",bet,cl,cu))