predict.trending_fit_tbl {trending} | R Documentation |
Predict method for trending_fit_tbl object
Description
Adds estimated values and associated confidence and/or prediction intervals to trending_fit_tbl objects.
Usage
## S3 method for class 'trending_fit_tbl'
predict(
object,
new_data,
name = "estimate",
alpha = 0.05,
add_ci = TRUE,
ci_names = c("lower_ci", "upper_ci"),
add_pi = TRUE,
pi_names = c("lower_pi", "upper_pi"),
simulate_pi = FALSE,
sims = 2000,
uncertain = TRUE,
...
)
Arguments
object |
A |
new_data |
A |
name |
Character vector of length one giving the name to use for the calculated estimate. |
alpha |
The alpha threshold to be used for prediction intervals, defaulting to 0.05, i.e. 95% prediction intervals are derived. |
add_ci |
Should a confidence interval be added to the output. Default TRUE. |
ci_names |
Names to use for the resulting confidence intervals. |
add_pi |
Should a prediction interval be added to the output. Default TRUE. |
pi_names |
Names to use for the resulting prediction intervals. |
simulate_pi |
Should the prediction intervals for glm models be
simulated. If TRUE, default, |
sims |
The number of simulations to run when simulating prediction intervals for a glm model. |
uncertain |
Only used for glm models and when |
... |
Not currently used. |
Value
a trending_predict_tbl
object which is a
tibble
subclass with one row per model and columns
'result', 'warnings' and 'errors' with contents as above.:
result: the input data frame with additional estimates and, optionally, confidence and or prediction intervals.
NULL
if the associatedpredict
method fails.warnings: any warnings generated during prediction.
errors: any errors generated during prediction.
Author(s)
Tim Taylor
See Also
predict.trending_fit()
, predict.trending_fit_tbl()
and
predict.trending_model()
Examples
x = rnorm(100, mean = 0)
y = rpois(n = 100, lambda = exp(1.5 + 0.5*x))
dat <- data.frame(x = x, y = y)
poisson_model <- glm_model(y ~ x , family = "poisson")
negbin_model <- glm_nb_model(y ~ x)
fitted_tbl <- fit(list(poisson_model, negbin_model), dat)
predict(fitted_tbl)