| predict.trending_fit_tbl {trending} | R Documentation | 
Predict method for trending_fit_tbl object
Description
Adds estimated values and associated confidence and/or prediction intervals to trending_fit_tbl objects.
Usage
## S3 method for class 'trending_fit_tbl'
predict(
  object,
  new_data,
  name = "estimate",
  alpha = 0.05,
  add_ci = TRUE,
  ci_names = c("lower_ci", "upper_ci"),
  add_pi = TRUE,
  pi_names = c("lower_pi", "upper_pi"),
  simulate_pi = FALSE,
  sims = 2000,
  uncertain = TRUE,
  ...
)
Arguments
| object | A  | 
| new_data | A  | 
| name | Character vector of length one giving the name to use for the calculated estimate. | 
| alpha | The alpha threshold to be used for prediction intervals, defaulting to 0.05, i.e. 95% prediction intervals are derived. | 
| add_ci | Should a confidence interval be added to the output. Default TRUE. | 
| ci_names | Names to use for the resulting confidence intervals. | 
| add_pi | Should a prediction interval be added to the output. Default TRUE. | 
| pi_names | Names to use for the resulting prediction intervals. | 
| simulate_pi | Should the prediction intervals for glm models be
simulated. If TRUE, default,  | 
| sims | The number of simulations to run when simulating prediction intervals for a glm model. | 
| uncertain | Only used for glm models and when  | 
| ... | Not currently used. | 
Value
a trending_predict_tbl object which is a
tibble subclass with one row per model and columns
'result', 'warnings' and 'errors' with contents as above.:
- result: the input data frame with additional estimates and, optionally, confidence and or prediction intervals. - NULLif the associated- predictmethod fails.
- warnings: any warnings generated during prediction. 
- errors: any errors generated during prediction. 
Author(s)
Tim Taylor
See Also
predict.trending_fit(), predict.trending_fit_tbl() and
predict.trending_model()
Examples
x = rnorm(100, mean = 0)
y = rpois(n = 100, lambda = exp(1.5 + 0.5*x))
dat <- data.frame(x = x, y = y)
poisson_model <- glm_model(y ~ x , family = "poisson")
negbin_model <- glm_nb_model(y ~ x)
fitted_tbl <- fit(list(poisson_model, negbin_model), dat)
predict(fitted_tbl)