calculate_rmse {trendeval} | R Documentation |
Generic for calculating the root mean squared error
Description
Generic calculate_rmse()
returns the root mean square error for the given
input.
Usage
calculate_rmse(x, ...)
## Default S3 method:
calculate_rmse(x, ...)
## S3 method for class 'trending_model'
calculate_rmse(x, data, na.rm = TRUE, as_tibble = TRUE, ...)
## S3 method for class 'list'
calculate_rmse(x, data, na.rm = TRUE, ...)
## S3 method for class 'trending_fit'
calculate_rmse(x, new_data, na.rm = TRUE, as_tibble = TRUE, ...)
## S3 method for class 'trending_fit_tbl'
calculate_rmse(x, new_data, na.rm = TRUE, ...)
## S3 method for class 'trending_predict'
calculate_rmse(x, na.rm = TRUE, as_tibble = TRUE, ...)
## S3 method for class 'trending_predict_tbl'
calculate_rmse(x, na.rm = TRUE, ...)
## S3 method for class 'trending_prediction'
calculate_rmse(x, na.rm = TRUE, as_tibble = TRUE, ...)
Arguments
x |
An R object. |
... |
Not currently used. |
data |
a |
na.rm |
Should NA values should be removed before calculation of metric (passed to the underlying function yardstick::rmse_vec). |
as_tibble |
Should the result be returned as tibble
( |
new_data |
a |
Details
Specific methods are given for trending_model
(and lists of
these), trending_fit
,
trending_fit_tbl
,
trending_predict_tbl
,
trending_predict_tbl
and
trending_prediction
objects. Each of these are simply wrappers around the
yardstick::rmse_vec with the addition of explicit error handling.
Value
For a single trending_fit
input, if
as_tibble = FALSE
the object returned will be a list with entries:
metric: "rmse"
result: the resulting rmse value (NULL if the calculation failed)
warnings: any warnings generated during calculation
errors: any errors generated during calculation
If as_tibble = TRUE
, or for the other trending
classes, then the output
will be a tibble with one row for each fitted model
columns corresponding to output generated with single model input.
Author(s)
Tim Taylor
#' @examples x = rnorm(100, mean = 0) y = rpois(n = 100, lambda = exp(1.5 + 0.5*x)) dat <- data.frame(x = x, y = y) poisson_model <- glm_model(y ~ x , family = "poisson") negbin_model <- glm_nb_model(y ~ x) fitted_model <- fit(poisson_model, dat) fitted_models <- fit(list(poisson_model, negbin_model), data = dat)
calculate_rmse(poisson_model, dat) calculate_rmse(fitted_model) calculate_rmse(fitted_model, as_tibble = TRUE) calculate_rmse(fitted_models)