plot_feature_dependence {treeshap} | R Documentation |
SHAP value based Feature Dependence plot
Description
Depending on the value of a variable: how does it contribute into the prediction?
Usage
plot_feature_dependence(
treeshap,
variable,
title = "Feature Dependence",
subtitle = NULL
)
Arguments
treeshap |
A treeshap object produced with the |
variable |
name or index of variable for which feature dependence will be plotted. |
title |
the plot's title, by default |
subtitle |
the plot's subtitle. By default no subtitle. |
Value
a ggplot2
object
See Also
treeshap
for calculation of SHAP values
plot_contribution
, plot_feature_importance
, plot_interaction
Examples
library(xgboost)
data <- fifa20$data[colnames(fifa20$data) != 'work_rate']
target <- fifa20$target
param <- list(objective = "reg:squarederror", max_depth = 3)
xgb_model <- xgboost::xgboost(as.matrix(data), params = param, label = target,
nrounds = 20, verbose = FALSE)
unified_model <- xgboost.unify(xgb_model, as.matrix(data))
x <- head(data, 100)
shaps <- treeshap(unified_model, x)
plot_feature_dependence(shaps, variable = "overall")
[Package treeshap version 0.3.1 Index]