| generate_data {transmdl} | R Documentation | 
Generate data for simulation.
Description
Generate observed event times, covariates and other data used for simulations in the paper.
Usage
generate_data(n, alpha, rho, beta_true, now_repeat = 1)
Arguments
| n | number of subjects | 
| alpha | parameter in transformation function | 
| rho | parameter in baseline cumulative hazard function  | 
| beta_true | parameter  | 
| now_repeat | number of duplication of simulation | 
Details
The survival function for t of the ith observation takes
the form 
S_{i}(t| X_{i}) = \exp\left\{-H \{\Lambda(t) \exp ( \beta^T
X_{i} ) \}\right\}.
 The failure time T_i can be generated by 
T_i = \left\{\begin{array}{l l} \exp\{
\frac{U^{-\alpha}-1}{\alpha\rho\exp\{\beta^TX_i \}} \}-1& \alpha > 0, \\
\exp\{  \frac{-log(U)}{\rho\exp\{\beta^TX_i \}} \}-1, & \alpha = 0.
\end{array}\right\} 
Value
a list containing
| X | design matrix | ||
| beta_X | X\cdot\beta^T | ||
| Y | observed event time | ||
References
Abramowitz, M., and Stegun, I.A. (1972). Handbook of Mathematical Functions (9th ed.). Dover Publications, New York. +- Evans, M. and Swartz, T. (2000). Approximating Integrals via Monte Carlo and Deterministic Methods. Oxford University Press.
Liu, Q. and Pierce, D.A. (1994). A note on Gauss-Hermite quadrature. Biometrika 81: 624-629.
Examples
 generate_data(200,0.5,1,c(0.5,-1))