EM_est {transmdl} | R Documentation |
Estimate parameters and hazard function via EM algorithm.
Description
Estimate the vector of parameters for baseline covariates
\beta
and baseline cumulative hazard function \Lambda(\cdot)
using the expectation-maximization algorithm. \Lambda(t)
is estimated
as a step function with jumps only at the observed failure times. Typically,
it would only be used in a call to trans.m
or Simu
.
Usage
EM_est(Y, X, delta, alpha, Q = 60, EM_itmax = 250)
Arguments
Y |
observed event times |
X |
design matrix |
delta |
censoring indicator. If |
alpha |
parameter in transformation function |
Q |
number of nodes and weights in Gaussian quadrature. Defaults to 60. |
EM_itmax |
maximum iteration of EM algorithm. Defaults to 250. |
Value
a list containing
beta_new |
estimator of \beta |
||
Lamb_Y | estimator of
\Lambda(Y) |
||
lamb_Y | estimator of
\lambda(Y) |
||
lamb_Ydot | estimator of
\lambda(Y') |
||
Y_eq_Yhat | a matrix used in
trans.m and Simu |
||
Y_geq_Yhat | a matrix
used in trans.m and Simu |
||
References
Abramowitz, M., and Stegun, I.A. (1972). Handbook of Mathematical Functions (9th ed.). Dover Publications, New York.
Evans, M. and Swartz, T. (2000). Approximating Integrals via Monte Carlo and Deterministic Methods. Oxford University Press.
Liu, Q. and Pierce, D.A. (1994). A note on Gauss-Hermite quadrature. Biometrika 81: 624-629.
Examples
gen_data = generate_data(200, 1, 0.5, c(-0.5, 1))
delta = gen_data$delta
Y = gen_data$Y
X = gen_data$X
EM_est(Y, X, delta, alpha = 1)$beta_new - c(-0.5, 1)