dlo_dynamics {transforEmotion}R Documentation

Dynamics function of the DLO model

Description

This function calculates the dynamics of a system using the DLO (Damped Linear Oscillator) model based on Equation 1 (Ollero et al., 2023). The DLO model is a second-order differential equation that describes the behavior of a damped harmonic oscillator. The function takes in the current state of the system, the derivative of the state, the damping coefficient, the time step, and the values of the eta and zeta parameters. It returns the updated derivative of the state.

Usage

dlo_dynamics(x, dxdt, q, dt, eta, zeta)

Arguments

x

Numeric. The current state of the system (value of the latent score).

dxdt

Numeric. The derivative of the state (rate of change of the latent score).

q

Numeric. The damping coefficient.

dt

Numeric. The time step.

eta

Numeric. The eta parameter of the DLO model.

zeta

Numeric. The zeta parameter of the DLO model.

Value

A numeric vector containing the updated derivative of the state.

References

Ollero, M. J. F., Estrada, E., Hunter, M. D., & Cáncer, P. F. (2023). Characterizing affect dynamics with a damped linear oscillator model: Theoretical considerations and recommendations for individual-level applications. Psychological Methods. doi:10.1037/met0000615


[Package transforEmotion version 0.1.4 Index]