tramnet {tramnet} | R Documentation |
Regularised Transformation Models
Description
Partially penalized and constrained transformation models,
including Cox models and continuous outcome logistic regression.
The methodology is described in the tramnet
vignette
accompanying this package.
Usage
tramnet(model, x, lambda, alpha, constraints = NULL, ...)
Arguments
model |
an object of class |
x |
a numeric matrix, where each row corresponds to the same row in the
|
lambda |
a positive penalty parameter for the whole penalty function |
alpha |
a mixing parameter (between zero and one) defining the fraction between absolute and quadratic penalty terms |
constraints |
an optional list containing a matrix of linear inequality contraints on the regression coefficients and a vector specifying the rhs of the inequality |
... |
additional parameters to |
Value
An object of class "tramnet"
with coef
, logLik
,
summary
, simulate
, residuals
and plot
methods
Author(s)
Lucas Kook, Balint Tamasi, Sandra Sigfried
Examples
if (require("penalized") & require("survival")) {
## --- Comparison with penalized
data("nki70", package = "penalized")
nki70$resp <- with(nki70, Surv(time, event))
x <- scale(model.matrix( ~ 0 + DIAPH3 + NUSAP1 + TSPYL5 + C20orf46,
data = nki70))
fit <- penalized(response = resp, penalized = x, lambda1 = 1, lambda2 = 0,
standardize = FALSE, data = nki70)
y <- Coxph(resp ~ 1, data = nki70, order = 10, log_first = TRUE)
fit2 <- tramnet(y, x, lambda = 1, alpha = 1) ## L1 only
coef(fit)
coef(fit2)
}