prof_lambda {tramnet} | R Documentation |
Profiling tuning parameters
Description
Computes the regularization path of all coefficients for a single tuning parameter, lambda, over a sequence of values.
Usage
prof_lambda(model, min_lambda = 0, max_lambda = 15, nprof = 5,
as.lm = FALSE)
Arguments
model |
model of class |
min_lambda |
minimal value of lambda (default = |
max_lambda |
maximal value of lambda (default = |
nprof |
number of profiling steps (default = |
as.lm |
return scaled coefficients for class |
Value
Object of class "prof_lambda"
which contains the regularization
path of all coefficients and the log-likelihood over the penalty parameter
lambda
Author(s)
Lucas Kook
Examples
library("tramnet")
if (require("survival") & require("penalized")) {
data("nki70", package = "penalized")
nki70$resp <- with(nki70, Surv(time, event))
x <- scale(model.matrix( ~ 0 + DIAPH3 + NUSAP1 + TSPYL5 + C20orf46, data = nki70))
y <- Coxph(resp ~ 1, data = nki70, order = 10, log_first = TRUE)
fit <- tramnet(y, x, lambda = 0, alpha = 1)
pfl <- prof_lambda(fit)
plot_path(pfl)
}
[Package tramnet version 0.0-8 Index]