implemented_model_classes {tramicp} | R Documentation |
Aliases for implemented model classes
Description
ICP for Box-Cox-type transformed normal regression, parametric and semiparametric survival models, continuous outcome logistic regression, linear regression, cumulative ordered regression, generalized linear models; and nonparametric ICP via ranger. While TRAMICP based on quantile and survival random forests is also supported, for these methods it comes without theoretical guarantees as of yet.
Usage
BoxCoxICP(
formula,
data,
env,
verbose = TRUE,
type = "residual",
test = "gcm.test",
controls = NULL,
alpha = 0.05,
baseline_fixed = TRUE,
greedy = FALSE,
max_size = NULL,
mandatory = NULL,
...
)
SurvregICP(
formula,
data,
env,
verbose = TRUE,
type = "residual",
test = "gcm.test",
controls = NULL,
alpha = 0.05,
baseline_fixed = TRUE,
greedy = FALSE,
max_size = NULL,
mandatory = NULL,
...
)
survregICP(
formula,
data,
env,
verbose = TRUE,
type = "residual",
test = "gcm.test",
controls = NULL,
alpha = 0.05,
baseline_fixed = TRUE,
greedy = FALSE,
max_size = NULL,
mandatory = NULL,
...
)
coxphICP(
formula,
data,
env,
verbose = TRUE,
type = "residual",
test = "gcm.test",
controls = NULL,
alpha = 0.05,
baseline_fixed = TRUE,
greedy = FALSE,
max_size = NULL,
mandatory = NULL,
...
)
ColrICP(
formula,
data,
env,
verbose = TRUE,
type = "residual",
test = "gcm.test",
controls = NULL,
alpha = 0.05,
baseline_fixed = TRUE,
greedy = FALSE,
max_size = NULL,
mandatory = NULL,
...
)
CoxphICP(
formula,
data,
env,
verbose = TRUE,
type = "residual",
test = "gcm.test",
controls = NULL,
alpha = 0.05,
baseline_fixed = TRUE,
greedy = FALSE,
max_size = NULL,
mandatory = NULL,
...
)
LehmannICP(
formula,
data,
env,
verbose = TRUE,
type = "residual",
test = "gcm.test",
controls = NULL,
alpha = 0.05,
baseline_fixed = TRUE,
greedy = FALSE,
max_size = NULL,
mandatory = NULL,
...
)
LmICP(
formula,
data,
env,
verbose = TRUE,
type = "residual",
test = "gcm.test",
controls = NULL,
alpha = 0.05,
baseline_fixed = TRUE,
greedy = FALSE,
max_size = NULL,
mandatory = NULL,
...
)
lmICP(
formula,
data,
env,
verbose = TRUE,
type = "residual",
test = "gcm.test",
controls = NULL,
alpha = 0.05,
baseline_fixed = TRUE,
greedy = FALSE,
max_size = NULL,
mandatory = NULL,
...
)
PolrICP(
formula,
data,
env,
verbose = TRUE,
type = "residual",
test = "gcm.test",
controls = NULL,
alpha = 0.05,
baseline_fixed = TRUE,
greedy = FALSE,
max_size = NULL,
mandatory = NULL,
...
)
polrICP(
formula,
data,
env,
verbose = TRUE,
type = "residual",
test = "gcm.test",
controls = NULL,
alpha = 0.05,
baseline_fixed = TRUE,
greedy = FALSE,
max_size = NULL,
mandatory = NULL,
...
)
glmICP(
formula,
data,
env,
verbose = TRUE,
type = "residual",
test = "gcm.test",
controls = NULL,
alpha = 0.05,
baseline_fixed = TRUE,
greedy = FALSE,
max_size = NULL,
mandatory = NULL,
...
)
cotramICP(
formula,
data,
env,
verbose = TRUE,
type = "residual",
test = "gcm.test",
controls = NULL,
alpha = 0.05,
baseline_fixed = TRUE,
greedy = FALSE,
max_size = NULL,
mandatory = NULL,
...
)
rangerICP(
formula,
data,
env,
verbose = TRUE,
type = "residual",
test = "gcm.test",
controls = NULL,
alpha = 0.05,
baseline_fixed = TRUE,
greedy = FALSE,
max_size = NULL,
mandatory = NULL,
...
)
survforestICP(
formula,
data,
env,
verbose = TRUE,
type = "residual",
test = "gcm.test",
controls = NULL,
alpha = 0.05,
baseline_fixed = TRUE,
greedy = FALSE,
max_size = NULL,
mandatory = NULL,
...
)
qrfICP(
formula,
data,
env,
verbose = TRUE,
type = "residual",
test = "gcm.test",
controls = NULL,
alpha = 0.05,
baseline_fixed = TRUE,
greedy = FALSE,
max_size = NULL,
mandatory = NULL,
...
)
Arguments
formula |
A |
data |
A |
env |
A |
verbose |
Logical, whether output should be verbose (default |
type |
Character, type of invariance ( |
test |
Character, specifies the invariance test to be used when
|
controls |
Controls for the used tests and the overall procedure,
see |
alpha |
Level of invariance test, default |
baseline_fixed |
Fixed baseline transformation, see
|
greedy |
Logical, whether to perform a greedy version of ICP (default is
|
max_size |
Numeric; maximum support size. |
mandatory |
A |
... |
Further arguments passed to |
Value
Object of type "dICP"
. See dicp
Examples
set.seed(123)
d <- dgp_dicp(mod = "boxcox", n = 300)
BoxCoxICP(Y ~ X2, data = d, env = ~ E, type = "wald")
set.seed(123)
d <- dgp_dicp(mod = "weibull", n = 300)
SurvregICP(Y ~ X1 + X2 + X3, data = d, env = ~ E)
### or
library("survival")
d$Y <- Surv(d$Y)
survregICP(Y ~ X1 + X2 + X3, data = d, env = ~ E)
CoxphICP(Y ~ X2, data = d, env = ~ E)
coxphICP(Y ~ X2, data = d, env = ~ E)
set.seed(123)
d <- dgp_dicp(mod = "colr", n = 300)
ColrICP(Y ~ X1 + X2 + X3, data = d, env = ~ E)
set.seed(123)
d <- dgp_dicp(mod = "coxph", n = 300)
LehmannICP(Y ~ X2, data = d, env = ~ E)
set.seed(123)
d <- dgp_dicp(mod = "lm", n = 300)
LmICP(Y ~ X1 + X2 + X3, data = d, env = ~ E)
### or
lmICP(Y ~ X1 + X2 + X3, data = d, env = ~ E)
set.seed(123)
d <- dgp_dicp(mod = "polr", n = 300)
PolrICP(Y ~ X1 + X2 + X3, data = d, env = ~ E)
### or
PolrICP(Y ~ X1 + X2 + X3, data = d, env = ~ E)
set.seed(123)
d <- dgp_dicp(mod = "binary", n = 300)
glmICP(Y ~ X1 + X2 + X3, data = d, env = ~ E, family = "binomial")
set.seed(123)
d <- dgp_dicp(mod = "cotram", n = 300)
cotramICP(Y ~ X2, data = d, env = ~ E)
set.seed(123)
d <- dgp_dicp(mod = "binary", n = 300)
rangerICP(Y ~ X1 + X2 + X3, data = d, env = ~ E)
set.seed(12)
d <- dgp_dicp(mod = "coxph", n = 3e2)
d$Y <- survival::Surv(d$Y, sample(0:1, 3e2, TRUE, prob = c(0.1, 0.9)))
survforestICP(Y ~ X1 + X2 + X3, data = d, env = ~ E)
set.seed(12)
d <- dgp_dicp(mod = "boxcox", n = 3e2)
qrfICP(Y ~ X1 + X2 + X3, data = d, env = ~ E)