perm_test {tram} | R Documentation |
Permutation Transformation Tests
Description
P-values for a parameter in a linear transformation model and corresponding confidence intervals obtained from by the permutation principle
Usage
perm_test(object, ...)
## S3 method for class 'tram'
perm_test(object, parm = names(coef(object)),
statistic = c("Score", "Likelihood", "Wald"),
alternative = c("two.sided", "less", "greater"),
nullvalue = 0, confint = TRUE, level = .95,
Taylor = FALSE, block_permutation = TRUE, maxsteps = 25, ...)
Arguments
object |
an object of class |
parm |
a vector of names of parameters to be tested.
These parameters must be present in |
statistic |
a character string specifying the statistic to be
permuted. The default |
alternative |
a character string specifying the alternative hypothesis,
must be one of |
nullvalue |
a number specifying an optional parameter used to form the null hypothesis. |
confint |
a logical indicating whether a confidence interval should be
computed. Score confidence intervals are computed by default. A
1st order Taylor approximation to the Score statistc is used with
|
level |
the confidence level. |
block_permutation |
a logical indicating wheather stratifying variables shall be interpreted as blocks defining admissible permutations. |
Taylor |
a logical requesting the use of a 1st order Taylor approximation when inverting the score statistic. |
maxsteps |
number of function evaluations when inverting the score statistic for computing confidence intervals. |
... |
additional arguments to |
Details
Permutation test for one single parameters in the linear
predictor of object
is computed. This parameters must be present
in object
. This is somewhat experimental and not recommended for
serious practical use (yet!).
Value
An object of class htest
or a list thereof. See Coxph
for an example.
Examples
## Tritiated Water Diffusion Across Human Chorioamnion
## Hollander and Wolfe (1999, p. 110, Tab. 4.1)
diffusion <- data.frame(
pd = c(0.80, 0.83, 1.89, 1.04, 1.45, 1.38, 1.91, 1.64, 0.73, 1.46,
1.15, 0.88, 0.90, 0.74, 1.21),
age = factor(rep(c("At term", "12-26 Weeks"), c(10, 5)))
)
### plot the two quantile functions
boxplot(pd ~ age, data = diffusion)
### the Wilcoxon rank sum test, with a confidence interval
### for a median shift
wilcox.test(pd ~ age, data = diffusion, conf.int = TRUE, exact = TRUE)
### a corresponding parametric transformation model with a log-odds ratio
### difference parameter, ie a difference on the log-odds scale
md <- Colr(pd ~ age, data = diffusion)
### assess model fit by plotting estimated distribution fcts
agef <- sort(unique(diffusion$age))
col <- c("black", "darkred")
plot(as.mlt(md), newdata = data.frame(age = agef),
type = "distribution", col = col)
legend("bottomright", col = col, lty = 1, legend = levels(agef),
bty = "n", pch = 19)
## compare with ECDFs: not too bad (but not good, either)
npfit <- with(diffusion, tapply(pd, age, ecdf))
lines(npfit[[1]], col = col[1])
lines(npfit[[2]], col = col[2])
### Wald confidence interval
confint(md)
### Likelihood confidence interval
confint(profile(md))
### Score confidence interval
confint(score_test(md))
confint(score_test(md, Taylor = TRUE))
### exact permutation score test
(pt <- perm_test(md, confint = TRUE, distribution = "exact"))
(pt <- perm_test(md, confint = TRUE, distribution = "exact",
Taylor = TRUE))
### compare with probabilistic indices obtained from asht::wmwTest
if (require("asht", warn.conflicts = FALSE)) {
print(wt2 <- wmwTest(pd ~ I(relevel(age, "At term")),
data = diffusion, method = "exact.ce"))
### as log-odds ratios
print(PI(prob = wt2$conf.int))
print(PI(prob = wt2$estimate))
}