| trait_parametric_bootstrap {traitstrap} | R Documentation |
Bootstrap traits parametrically
Description
Function for parametric bootstrap resampling to calculate community weighted trait mean and higher moments.
Usage
trait_parametric_bootstrap(
fitted_distributions,
nrep = 100,
sample_size = 200,
raw = FALSE
)
Arguments
fitted_distributions |
Fitted distribution object returned by trait_fit_distributions |
nrep |
number of bootstrap replicates |
sample_size |
bootstrap size |
raw |
logical; argument to extract the raw data of the
trait distributions.
The default is |
Details
trait_parametric_bootstrap() is a parametric analogue of the
trait_np_bootstrap().
It randomly samples from among the fitted distributions
proportionally to species abundance.
The number of samples per replicated are drawn
specified with the parameter sample_size,
and the number of replicates is specified
by the parameter nrep.
From these distributions the function estimates the mean
and the higher moments including variance, skewness and kurtosis.
The output of trait_parametric_bootstrap() can be summarized using
trait_summarize_boot_moments().
Value
a tibble
Examples
library(dplyr)
data(community)
data(trait)
# Filter trait and community data to make example faster
community <- community |>
filter(
PlotID %in% c("A", "B"),
Site == 1
)
trait <- trait |>
filter(Trait %in% c("Plant_Height_cm"))
filled_traits <- trait_fill(
comm = community,
traits = trait,
scale_hierarchy = c("Site", "PlotID"),
taxon_col = "Taxon", value_col = "Value",
trait_col = "Trait", abundance_col = "Cover"
)
fitted_distributions <- trait_fit_distributions(
filled_traits = filled_traits,
distribution_type = "normal"
)
# Note that more replicates and a greater sample size are advisable
# Here we set them low to make the example run quickly
parametric_distributions <- trait_parametric_bootstrap(
fitted_distributions = fitted_distributions,
nrep = 5,
sample_size = 100
)
moment_summary <- trait_summarise_boot_moments(
bootstrap_moments = parametric_distributions,
parametric = FALSE
)