| train.randomForest {traineR} | R Documentation |
train.randomForest
Description
Provides a wrapping function for the randomForest.
Usage
train.randomForest(formula, data, ..., subset, na.action = na.fail)
Arguments
formula |
a formula describing the model to be fitted (for the print method, an randomForest object). |
data |
an optional data frame containing the variables in the model. By default the variables are taken from the environment which randomForest is called from. |
... |
optional parameters to be passed to the low level function randomForest.default. |
subset |
an index vector indicating which rows should be used. (NOTE: If given, this argument must be named.) |
na.action |
A function to specify the action to be taken if NAs are found. (NOTE: If given, this argument must be named.) |
Value
A object randomForest.prmdt with additional information to the model that allows to homogenize the results.
Note
the parameter information was taken from the original function randomForest.
See Also
The internal function is from package randomForest.
Examples
# Classification
data("iris")
n <- seq_len(nrow(iris))
.sample <- sample(n, length(n) * 0.75)
data.train <- iris[.sample,]
data.test <- iris[-.sample,]
modelo.rf <- train.randomForest(Species~., data.train)
modelo.rf
prob <- predict(modelo.rf, data.test, type = "prob")
prob
prediccion <- predict(modelo.rf, data.test, type = "class")
prediccion
# Regression
len <- nrow(swiss)
sampl <- sample(x = 1:len,size = len*0.20,replace = FALSE)
ttesting <- swiss[sampl,]
ttraining <- swiss[-sampl,]
model.rf <- train.randomForest(Infant.Mortality~.,ttraining)
prediction <- predict(model.rf, ttesting)
prediction