| train.knn {traineR} | R Documentation | 
train.knn
Description
Provides a wrapping function for the train.kknn.
Usage
train.knn(
  formula,
  data,
  kmax = 11,
  ks = NULL,
  distance = 2,
  kernel = "optimal",
  ykernel = NULL,
  scale = TRUE,
  contrasts = c(unordered = "contr.dummy", ordered = "contr.ordinal"),
  ...
)
Arguments
| formula | A formula object. | 
| data | Matrix or data frame. | 
| kmax | Maximum number of k, if ks is not specified. | 
| ks | A vector specifying values of k. If not null, this takes precedence over kmax. | 
| distance | Parameter of Minkowski distance. | 
| kernel | Kernel to use. Possible choices are "rectangular" (which is standard unweighted knn), "triangular", "epanechnikov" (or beta(2,2)), "biweight" (or beta(3,3)), "triweight" (or beta(4,4)), "cos", "inv", "gaussian" and "optimal". | 
| ykernel | Window width of an y-kernel, especially for prediction of ordinal classes. | 
| scale | logical, scale variable to have equal sd. | 
| contrasts | A vector containing the 'unordered' and 'ordered' contrasts to use. | 
| ... | Further arguments passed to or from other methods. | 
Value
A object knn.prmdt with additional information to the model that allows to homogenize the results.
Note
the parameter information was taken from the original function train.kknn.
See Also
The internal function is from package train.kknn.
Examples
# Classification
data("iris")
n <- seq_len(nrow(iris))
.sample <- sample(n, length(n) * 0.75)
data.train <- iris[.sample,]
data.test <- iris[-.sample,]
modelo.knn <- train.knn(Species~., data.train)
modelo.knn
prob <- predict(modelo.knn, data.test, type = "prob")
prob
prediccion <- predict(modelo.knn, data.test, type = "class")
prediccion
# Regression
len <- nrow(swiss)
sampl <- sample(x = 1:len,size = len*0.20,replace = FALSE)
ttesting <- swiss[sampl,]
ttraining <- swiss[-sampl,]
model.knn <- train.knn(Infant.Mortality~.,ttraining)
prediction <- predict(model.knn, ttesting)
prediction