| train.ada {traineR} | R Documentation | 
train.ada
Description
Provides a wrapping function for the ada.
Usage
train.ada(formula, data, ..., subset, na.action = na.rpart)
Arguments
formula | 
 a symbolic description of the model to be fit.  | 
data | 
 an optional data frame containing the variables in the model.  | 
... | 
 arguments passed to rpart.control. For stumps, use rpart.control(maxdepth=1,cp=-1,minsplit=0,xval=0). maxdepth controls the depth of trees, and cp controls the complexity of trees. The priors should also be fixed through the parms argument as discussed in the second reference.  | 
subset | 
 an optional vector specifying a subset of observations to be used in the fitting process.  | 
na.action | 
 a function that indicates how to process ‘NA’ values. Default=na.rpart.  | 
Value
A object ada.prmdt with additional information to the model that allows to homogenize the results.
Note
the parameter information was taken from the original function ada.
See Also
The internal function is from package ada.
Examples
data("Puromycin")
n <- seq_len(nrow(Puromycin))
.sample <- sample(n, length(n) * 0.75)
data.train <- Puromycin[.sample,]
data.test <- Puromycin[-.sample,]
modelo.ada <- train.ada(state~., data.train)
modelo.ada
prob <- predict(modelo.ada, data.test , type = "prob")
prob
prediccion <- predict(modelo.ada, data.test , type = "class")
prediccion