trafo_lm {trafo} | R Documentation |
Fits transformed linear models
Description
Function trafo_lm
fits linear models with transformed dependent
variable. The main return are two lm
objects where one is the
untransformed linear model and the other one the transformed linear model.
Usage
trafo_lm(object, trafo = "boxcox", lambda = "estim", method = "ml",
lambdarange = NULL, std = FALSE, custom_trafo = NULL)
Arguments
object |
an object of type |
trafo |
a character string. Different transformations can be used for transforming the dependent variable in a linear model: (i) "bickeldoksum", (ii) "boxcox", (iii) "dual", (iv) "glog", (v) "gpower", (vi) "log", (vii) "logshiftopt", (viii) "manly", (ix) "modulus", (x) "neglog", (xi) "reciprocal", (xii) "yeojohnson". Defaults to "boxcox". |
lambda |
either a character named "estim" if the optimal transformation parameter should be estimated or a numeric value determining a given value for the transformation parameter. Defaults to "estim". |
method |
a character string. Different estimation methods can be used for the estimation of the optimal transformation parameter: (i) Maximum likelihood approach ("ml"), (ii) Skewness minimization ("skew"), (iii) Kurtosis optimization ("kurt"), (iv) Divergence minimization by Kolmogorov-Smirnov ("div.ks"), by Cramer-von-Mises ("div.cvm") or by Kullback-Leibler ("div.kl"). Defaults to "ml". |
lambdarange |
a numeric vector with two elements defining an interval
that is used for the estimation of the optimal transformation parameter.
Defaults to |
std |
logical. If |
custom_trafo |
a list. The list has two elements where the first element
is a function specifying the desired transformation and the second element is
a function specifying the corresponding standardized transformation.
Defaults to |
Value
An object of class trafo_lm
. Methods such as
diagnostics.trafo_lm
, print.trafo_lm
,
plot.trafo_lm
and summary.trafo_lm
can
be used for this class.
See Also
bickeldoksum
, boxcox
, dual
,
glog
, gpower
, log
,
logshiftopt
, manly
, modulus
,
neglog
, sqrtshift
, yeojohnson
Examples
# Load data
data("cars", package = "datasets")
# Fit linear model
lm_cars <- lm(dist ~ speed, data = cars)
# Compare untransformed and transformed model
trafo_lm(object = lm_cars, trafo = "bickeldoksum", method = "skew",
lambdarange = c(1e-11, 2))