| sqrtshift {trafo} | R Documentation | 
Square-root shift transformation for linear models
Description
The function transforms the dependent variable of a linear model using the Square-root shift transformation. The transformation parameter can either be estimated using different estimation methods or given.
Usage
sqrtshift(object, lambda = "estim", method = "ml",
  lambdarange = NULL, plotit = TRUE)
Arguments
| object | an object of type lm. | 
| lambda | either a character named "estim" if the optimal transformation parameter should be estimated or a numeric value determining a given value for the transformation parameter. Defaults to "estim". | 
| method | a character string. Different estimation methods can be used for the estimation of the optimal transformation parameter: (i) Maximum likelihood approach ("ml"), (ii) Skewness minimization ("skew"), (iii) Kurtosis optimization ("kurt"), (iv) Divergence minimization by Kolmogorov-Smirnov ("div.ks"), by Cramer-von-Mises ("div.cvm") or by Kullback-Leibler ("div.kl"). Defaults to "ml". | 
| lambdarange | a numeric vector with two elements defining an interval 
that is used for the estimation of the optimal transformation parameter. 
Defaults to  | 
| plotit | logical. If  | 
Value
An object of class trafo. Methods such as 
as.data.frame.trafo and print.trafo can 
be used for this class.
Examples
# Load data
data("cars", package = "datasets")
# Fit linear model
lm_cars <- lm(dist ~ speed, data = cars)
# Transform dependent variable using a maximum likelihood approach
sqrtshift(object = lm_cars, plotit = TRUE)