gpower {trafo} | R Documentation |
Gpower transformation for linear models
Description
The function transforms the dependent variable of a linear model using the Gpower transformation. The transformation parameter can either be estimated using different estimation methods or given.
Usage
gpower(object, lambda = "estim", method = "ml", lambdarange = c(-2,
2), plotit = TRUE)
Arguments
object |
an object of type lm. |
lambda |
either a character named "estim" if the optimal transformation parameter should be estimated or a numeric value determining a given value for the transformation parameter. Defaults to "estim". |
method |
a character string. Different estimation methods can be used for the estimation of the optimal transformation parameter: (i) Maximum likelihood approach ("ml"), (ii) Skewness minimization ("skew"), (iii) Kurtosis optimization ("kurt"), (iv) Divergence minimization by Kolmogorov-Smirnov ("div.ks"), by Cramer-von-Mises ("div.cvm") or by Kullback-Leibler ("div.kl"). Defaults to "ml". |
lambdarange |
a numeric vector with two elements defining an interval
that is used for the estimation of the optimal transformation parameter.
Defaults to |
plotit |
logical. If |
Value
An object of class trafo
. Methods such as
as.data.frame.trafo
and print.trafo
can
be used for this class.
References
Kelmansky DM, Martinez EJ, Leiva V (2013). A New Variance Stabilizing Transformation for Gene Expression Data Analysis. Statistical applications in genetics and molecular biology, 12(6), 653-666.
Examples
# Load data
data("cars", package = "datasets")
# Fit linear model
lm_cars <- lm(dist ~ speed, data = cars)
# Transform dependent variable using divergence minimization following
# Kullback-Leibler
gpower(object = lm_cars, method = "div.kl", plotit = FALSE)