boxcox {trafo} | R Documentation |
Box-Cox transformation for linear models
Description
The function transforms the dependent variable of a linear model using the Box-Cox transformation. The transformation parameter can either be estimated using different estimation methods or given. The Box-Cox transformation is only defined for positive response values. In case the response contains zero or negative values a shift is automatically added such that y + shift > 0.
Usage
boxcox(object, lambda = "estim", method = "ml", lambdarange = c(-2,
2), plotit = TRUE)
Arguments
object |
an object of type |
lambda |
either a character named "estim" if the optimal transformation parameter should be estimated or a numeric value determining a given value for the transformation parameter. Defaults to "estim". |
method |
a character string. Different estimation methods can be used for the estimation of the optimal transformation parameter: (i) Maximum likelihood approach ("ml"), (ii) Skewness minimization ("skew"), (iii) Kurtosis optimization ("kurt"), (iv) Divergence minimization by Kolmogorov-Smirnov ("div.ks"), by Cramer-von-Mises ("div.cvm") or by Kullback-Leibler ("div.kl"). Defaults to "ml". |
lambdarange |
a numeric vector with two elements defining an interval
that is used for the estimation of the optimal transformation parameter.
Defaults to |
plotit |
logical. If |
Value
An object of class trafo
. Methods such as
as.data.frame.trafo
and print.trafo
can
be used for this class.
References
Box GEP, Cox DR (1964). An Analysis of Transformations. Journal of the Royal Statistical Society B, 26(2), 211-252.
Examples
# Load data
data("cars", package = "datasets")
# Fit linear model
lm_cars <- lm(dist ~ speed, data = cars)
# Transform dependent variable using skewness minimization
boxcox(object = lm_cars, method = "skew", plotit = FALSE)