proc.ci {tpAUC}R Documentation

Partial AUC Inference

Description

Infer the area of region under ROC curve with pre-specific FPR constraint (FPR-pAUC). See Yang et al., 2017 for details.

Usage

proc.ci(response, predictor, cp = 0.95, threshold = 0.9, method = "MW")

Arguments

response

a factor, numeric or character vector of responses; typically encoded with 0 (negative) and 1 (positive). Only two classes can be used in a ROC curve. If its levels are not 0/1, the first level will be defaultly regarded as negative.

predictor

a numeric vector of the same length than response, containing the predicted value of each observation. An ordered factor is coerced to a numeric.

cp

numeric; coverage probability of confidence interval.

threshold

numeric; false positive rate (FPR) constraint.

method

methods to estimate FPR-pAUC. MW: Mann-Whitney statistic. expect: method in (2.2) Wang and Chang, 2011. jackknife: jackknife method in Yang et al., 2017.

Details

This function infers FPR partial AUC given response, predictor and pre-specific FPR constraint. MW: Mann-Whitney statistic. method in Yang et al., 2017 adapted from Wang and Chang, 2011. jackknife: jackknife method in Yang et al., 2017.

Value

Confidence interval of FPR partial AUC.

Author(s)

Hanfang Yang, Kun Lu, Xiang Lyu, Feifang Hu, Yichuan Zhao.

See Also

tproc.est, podc.ci

Examples


library('pROC')
data(aSAH)
proc.ci(aSAH$outcome, aSAH$s100b, cp=0.95 ,threshold=0.9,method='expect')


[Package tpAUC version 2.1.1 Index]