makeTower {toweranNA} | R Documentation |
Nonimputational method for dealing with NA values in prediction application
Description
In a prediction application, the intended regression model is applied to complete cases, from which marginal regression models can be derived for predicting new cases having arbitrary NA patterns.
Usage
makeTower(data,yName,regFtnName,opts,scaling=NULL,yesYVal=NULL)
## S3 method for class 'tower'
predict(object,newx,k=1,...)
Arguments
data |
Data frame or equivalent. |
yName |
Name of the column in |
regFtnName |
Regression model to be used, currently 'lm', 'glm'
( |
opts |
Optional arguments for |
k |
number of nearest neighbors |
scaling |
Scaling to be applied to x and newx. Default NULL means no scaling. |
yesYVal |
In the case of dichotomous Y, this specifies the level to be considered positive, i.e. for which Y will be 1. |
object |
Object of type 'tower'. |
newx |
New case(s) to be predicted, in the same format as in the
non-Y portion of |
... |
Other arguments need by |
Value
Object of class 'tower', to be used as input to
predict.tower
.
Author(s)
Norm Matloff, Pete Mohanty
Examples
towerOut <- makeTower(mtcars,'mpg','lm')
newx <- mtcars[-c(1:10),-1]
for(i in 1:10)
newx[i, i] <- NA
head(newx)
# cyl disp hp drat wt qsec vs am gear carb
# Merc 280C NA 167.6 123 3.92 3.440 18.90 1 0 4 4
# Merc 450SE 8 NA 180 3.07 4.070 17.40 0 0 3 3
# Merc 450SL 8 275.8 NA 3.07 3.730 17.60 0 0 3 3
# Merc 450SLC 8 275.8 180 NA 3.780 18.00 0 0 3 3
# Cadillac Fleetwood 8 472.0 205 2.93 NA 17.98 0 0 3 4
# Lincoln Continental 8 460.0 215 3.00 5.424 NA 0 0 3 4
predict(towerOut,newx,k=3)
# [1] 20.00086 15.17132 15.17132 15.17132 11.15469 11.15469 11.15469 28.52625
# [9] 29.06067 28.52625 24.72144 17.45622 16.75827 15.52077 14.95958 28.52625
# [17] 25.34890 26.08506 15.52077 19.19484 15.37239 24.72144