| display_pca {tourr} | R Documentation | 
Display tour path with principal component scores with original axes
Description
Animate a 2D tour path on data that has been transformed into principal components, and also show the original variable axes.
Usage
display_pca(
  center = TRUE,
  axes = "center",
  half_range = NULL,
  col = "black",
  pch = 20,
  cex = 1,
  pc_coefs = NULL,
  edges = NULL,
  edges.col = "black",
  palette = "Zissou 1",
  ...
)
animate_pca(data, tour_path = grand_tour(), rescale = FALSE, ...)
Arguments
center | 
 if TRUE, centers projected data to (0,0). This pins the center of data cloud and make it easier to focus on the changing shape rather than position.  | 
axes | 
 position of the axes: center, bottomleft or off  | 
half_range | 
 half range to use when calculating limits of projected. If not set, defaults to maximum distance from origin to each row of data.  | 
col | 
 color to use for points, can be a vector or hexcolors or a factor. Defaults to "black".  | 
pch | 
 shape of the point to be plotted. Defaults to 20.  | 
cex | 
 size of the point to be plotted. Defaults to 1.  | 
pc_coefs | 
 coefficients relating the original variables to principal components. This is required.  | 
edges | 
 A two column integer matrix giving indices of ends of lines.  | 
edges.col | 
 colour of edges to be plotted, Defaults to "black.  | 
palette | 
 name of color palette for point colour, used by   | 
... | 
 other arguments passed on to   | 
data | 
 matrix, or data frame containing numeric columns  | 
tour_path | 
 tour path generator, defaults to 2d grand tour  | 
rescale | 
 Default FALSE. If TRUE, rescale all variables to range [0,1].  | 
Examples
flea_std <- apply(flea[,1:6], 2, function(x) (x-mean(x))/sd(x))
flea_pca <- prcomp(flea_std, center = FALSE, )
flea_coefs <- flea_pca$rotation[, 1:3]
flea_scores <- flea_pca$x[, 1:3]
animate_pca(flea_scores, pc_coefs = flea_coefs)