plotTopic {tosca} | R Documentation |
Plotting Counts of Topics over Time (Relative to Corpus)
Description
Creates a plot of the counts/proportion of specified topics of a result of
LDAgen
. There is an option to plot all curves in one plot
or to create one plot for every curve (see pages
).
In addition the plots can be written to a pdf by setting file
.
Usage
plotTopic(
object,
ldaresult,
ldaID,
select = 1:nrow(ldaresult$document_sums),
tnames,
rel = FALSE,
mark = TRUE,
unit = "month",
curves = c("exact", "smooth", "both"),
smooth = 0.05,
main,
xlab,
ylim,
ylab,
both.lwd,
both.lty,
col,
legend = ifelse(pages, "onlyLast:topright", "topright"),
pages = FALSE,
natozero = TRUE,
file,
...
)
Arguments
object |
|
ldaresult |
The result of a function call |
ldaID |
Character vector of IDs of the documents in
|
select |
Integer: Which topics of
|
tnames |
Character vector of same length as |
rel |
Logical: Should counts ( |
mark |
Logical: Should years be marked by
vertical lines (default: |
unit |
Character: To which unit should dates be floored
(default: |
curves |
Character: Should |
smooth |
Numeric: Smoothing parameter
which is handed over to |
main |
Character: Graphical parameter |
xlab |
Character: Graphical parameter |
ylim |
Graphical parameter |
ylab |
Character: Graphical parameter |
both.lwd |
Graphical parameter for smoothed values
if |
both.lty |
Graphical parameter for smoothed values
if |
col |
Graphical parameter, could be a vector. If |
legend |
Character: Value(s) to specify the legend coordinates (default: |
pages |
Logical: Should all curves be
plotted in a single plot (default: |
natozero |
Logical: Should NAs be coerced
to zeros (default: |
file |
Character: File path if a pdf should be created |
... |
Additional graphical parameters |
Value
A plot.
Invisible: A dataframe with columns date
and tnames
with the
counts/proportion of the selected topics.
Examples
## Not run:
data(politics)
poliClean <- cleanTexts(politics)
words10 <- makeWordlist(text=poliClean$text)
words10 <- words10$words[words10$wordtable > 10]
poliLDA <- LDAprep(text=poliClean$text, vocab=words10)
LDAresult <- LDAgen(documents=poliLDA, K=10, vocab=words10)
# plot all topics
plotTopic(object=poliClean, ldaresult=LDAresult, ldaID=names(poliLDA))
# plot special topics
plotTopic(object=poliClean, ldaresult=LDAresult, ldaID=names(poliLDA), select=c(1,4))
## End(Not run)