LDAgen {tosca} | R Documentation |
Function to fit LDA model
Description
This function uses the lda.collapsed.gibbs.sampler
from the lda-
package and additionally saves topword lists and a R workspace.
Usage
LDAgen(
documents,
K = 100L,
vocab,
num.iterations = 200L,
burnin = 70L,
alpha = NULL,
eta = NULL,
seed = NULL,
folder = file.path(tempdir(), "lda-result"),
num.words = 50L,
LDA = TRUE,
count = FALSE
)
Arguments
documents |
A list prepared by |
K |
Number of topics |
vocab |
Character vector containing the words in the corpus |
num.iterations |
Number of iterations for the gibbs sampler |
burnin |
Number of iterations for the burnin |
alpha |
Hyperparameter for the topic proportions |
eta |
Hyperparameter for the word distributions |
seed |
A seed for reproducability. |
folder |
File for the results. Saves in the temporary directionary by default. |
num.words |
Number of words in the top topic words list |
LDA |
logical: Should a new model be fitted or an existing R workspace? |
count |
logical: Should article counts calculated
per top topic words be used for output as csv
(default: |
Value
A .csv file containing the topword list and a R workspace containing the result data.
References
Blei, David M. and Ng, Andrew and Jordan, Michael. Latent Dirichlet allocation. Journal of Machine Learning Research, 2003.
Jonathan Chang (2012). lda: Collapsed Gibbs sampling methods for topic models.. R package version 1.3.2. http://CRAN.R-project.org/package=lda
See Also
Documentation for the lda package.
Examples
texts <- list(A="Give a Man a Fish, and You Feed Him for a Day.
Teach a Man To Fish, and You Feed Him for a Lifetime",
B="So Long, and Thanks for All the Fish",
C="A very able manipulative mathematician, Fisher enjoys a real mastery
in evaluating complicated multiple integrals.")
corpus <- textmeta(meta=data.frame(id=c("A", "B", "C", "D"),
title=c("Fishing", "Don't panic!", "Sir Ronald", "Berlin"),
date=c("1885-01-02", "1979-03-04", "1951-05-06", "1967-06-02"),
additionalVariable=1:4, stringsAsFactors=FALSE), text=texts)
corpus <- cleanTexts(corpus)
wordlist <- makeWordlist(corpus$text)
ldaPrep <- LDAprep(text=corpus$text, vocab=wordlist$words)
LDAgen(documents=ldaPrep, K = 3L, vocab=wordlist$words, num.words=3)