| ops_ps_roi_align {torchvisionlib} | R Documentation | 
Performs Position-Sensitive Region of Interest (RoI) Align operator
Description
The (RoI) Align operator is mentioned in Light-Head R-CNN.
Usage
ops_ps_roi_align(
  input,
  boxes,
  output_size,
  spatial_scale = 1,
  sampling_ratio = -1
)
nn_ps_roi_align(output_size, spatial_scale = 1, sampling_ratio = -1)
Arguments
| input | ( | 
| boxes | ( | 
| output_size | (int or  | 
| spatial_scale | (float): a scaling factor that maps the box coordinates to the input coordinates. For example, if your boxes are defined on the scale of a 224x224 image and your input is a 112x112 feature map (resulting from a 0.5x scaling of the original image), you'll want to set this to 0.5. Default: 1.0 | 
| sampling_ratio | (int): number of sampling points in the interpolation grid
used to compute the output value of each pooled output bin. If > 0,
then exactly  | 
Value
Tensor[K, C / (output_size[1] * output_size[2]), output_size[1], output_size[2]]:
The pooled RoIs
Functions
-  nn_ps_roi_align(): Thetorch::nn_module()wrapper forops_ps_roi_align().
Examples
if (torchvisionlib_is_installed()) {
library(torch)
library(torchvisionlib)
input <- torch_randn(1, 3, 28, 28)
boxes <- list(torch_tensor(matrix(c(1,1,5,5), ncol = 4)))
roi <- nn_ps_roi_align(output_size = c(1, 1))
roi(input, boxes)
}