| ops_deform_conv2d {torchvisionlib} | R Documentation | 
Performs Deformable Convolution v2,
Description
Ddescribed in Deformable ConvNets v2: More Deformable, Better Results
if mask is not NULL and performs Deformable Convolution, described in
Deformable Convolutional Networks
if mask is NULL.
Usage
ops_deform_conv2d(
  input,
  offset,
  weight,
  bias = NULL,
  stride = c(1, 1),
  padding = c(0, 0),
  dilation = c(1, 1),
  mask = NULL
)
Arguments
| input | ( | 
| offset | ( | 
| weight | ( | 
| bias | ( | 
| stride | (int or  | 
| padding | (int or  | 
| dilation | (int or  | 
| mask | ( | 
Value
Tensor[batch_sz, out_channels, out_h, out_w]: result of convolution
Examples
if (torchvisionlib_is_installed()) {
  library(torch)
  input <- torch_rand(4, 3, 10, 10)
  kh <- kw <- 3
  weight <- torch_rand(5, 3, kh, kw)
  # offset and mask should have the same spatial size as the output
  # of the convolution. In this case, for an input of 10, stride of 1
  # and kernel size of 3, without padding, the output size is 8
  offset <- torch_rand(4, 2 * kh * kw, 8, 8)
  mask <- torch_rand(4, kh * kw, 8, 8)
  out <- ops_deform_conv2d(input, offset, weight, mask = mask)
  print(out$shape)
}