| model_upsample_network {torchaudio} | R Documentation | 
UpsampleNetwork
Description
Upscale the dimensions of a spectrogram. Pass the input through the UpsampleNetwork layer.
Usage
model_upsample_network(
  upsample_scales,
  n_res_block = 10,
  n_freq = 128,
  n_hidden = 128,
  n_output = 128,
  kernel_size = 5
)
Arguments
upsample_scales | 
 the list of upsample scales.  | 
n_res_block | 
 the number of ResBlock in stack.  (Default:   | 
n_freq | 
 the number of bins in a spectrogram.  (Default:   | 
| 
 the number of hidden dimensions of resblock.  (Default:   | |
n_output | 
 the number of output dimensions of melresnet.  (Default:   | 
kernel_size | 
 the number of kernel size in the first Conv1d layer.  (Default:   | 
Details
forward param: specgram (Tensor): the input sequence to the UpsampleNetwork layer (n_batch, n_freq, n_time)
Value
Tensor shape: (n_batch, n_freq, (n_time - kernel_size + 1) * total_scale), (n_batch, n_output, (n_time - kernel_size + 1) * total_scale) where total_scale is the product of all elements in upsample_scales.
Examples
if(torch::torch_is_installed()) {
 upsamplenetwork = model_upsample_network(upsample_scales=c(4, 4, 16))
 input = torch::torch_rand (10, 128, 10)  # a random spectrogram
 output = upsamplenetwork (input)  # shape: (10, 1536, 128), (10, 1536, 128)
}
[Package torchaudio version 0.3.1 Index]