ptmvt {tmvtnorm} | R Documentation |
Truncated Multivariate Student t Distribution
Description
Computes the distribution function of the truncated multivariate t distribution
Usage
ptmvt(lowerx, upperx, mean = rep(0, length(lowerx)), sigma, df = 1,
lower = rep(-Inf, length = length(mean)),
upper = rep(Inf, length = length(mean)), maxpts = 25000, abseps = 0.001,
releps = 0)
Arguments
lowerx |
the vector of lower limits of length n. |
upperx |
the vector of upper limits of length n. |
mean |
the mean vector of length n. |
sigma |
the covariance matrix of dimension n. Either |
df |
Degrees of freedom parameter |
lower |
Vector of lower truncation points,
default is |
upper |
Vector of upper truncation points,
default is |
maxpts |
maximum number of function values as integer. |
abseps |
absolute error tolerance as double. |
releps |
relative error tolerance as double. |
Value
The evaluated distribution function is returned with attributes
error |
estimated absolute error and |
msg |
status messages. |
Author(s)
Stefan Wilhelm <Stefan.Wilhelm@financial.com>
References
Geweke, J. F. (1991) Efficient simulation from the multivariate normal and Student-t distributions subject to linear constraints and the evaluation of constraint probabilities. https://www.researchgate.net/publication/2335219_Efficient_Simulation_from_the_Multivariate_Normal_and_Student-t_Distributions_Subject_to_Linear_Constraints_and_the_Evaluation_of_Constraint_Probabilities
Samuel Kotz, Saralees Nadarajah (2004). Multivariate t Distributions and Their Applications. Cambridge University Press
Examples
sigma <- matrix(c(5, 0.8, 0.8, 1), 2, 2)
Fx <- ptmvt(lowerx=c(-1,-1), upperx=c(0.5,0), mean=c(0,0), sigma=sigma, df=3,
lower=c(-1,-1), upper=c(1,1))