dtmvnorm.marginal {tmvtnorm} | R Documentation |
One-dimensional marginal density functions from a Truncated Multivariate Normal distribution
Description
This function computes the one-dimensional marginal density function from a Truncated Multivariate Normal density function using the algorithm given in Cartinhour (1990).
Usage
dtmvnorm.marginal(xn, n=1,
mean= rep(0, nrow(sigma)),
sigma=diag(length(mean)),
lower=rep(-Inf, length = length(mean)),
upper=rep( Inf, length = length(mean)),
log=FALSE)
Arguments
xn |
Vector of quantiles to calculate the marginal density for. |
n |
Index position (1..k) within the random vector x to calculate the one-dimensional marginal density for. |
mean |
Mean vector, default is |
sigma |
Covariance matrix, default is |
lower |
Vector of lower truncation points,\
default is |
upper |
Vector of upper truncation points,\
default is |
log |
Logical; if |
Details
The one-dimensional marginal density f_i(x_i)
of x_i
is
f_i(x_i) = \int_{a_1}^{b_1} \ldots \int_{a_{i-1}}^{b_{i-1}} \int_{a_{i+1}}^{b_{i+1}} \ldots \int_{a_k}^{b_k} f(x) dx_{-i}
Note that the one-dimensional marginal density is not truncated normal, but only conditional densities are truncated normal.
Author(s)
Stefan Wilhelm <Stefan.Wilhelm@financial.com>
References
Cartinhour, J. (1990). One-dimensional marginal density functions of a truncated multivariate normal density function. Communications in Statistics - Theory and Methods, 19, 197–203
Arnold et al. (1993). The Nontruncated Marginal of a Truncated Bivariate Normal Distribution. Psychometrika, 58, 471–488
Examples
#############################################
#
# Example 1: truncated bivariate normal
#
#############################################
# parameters of the bivariate normal distribution
sigma = matrix(c(1 , 0.95,
0.95, 1 ), 2, 2)
mu = c(0,0)
# sample from multivariate normal distribution
X = rmvnorm(5000, mu, sigma)
# tuncation in x2 with x2 <= 0
X.trunc = X[X[,2]<0,]
# plot the realisations before and after truncation
par(mfrow=c(2,2))
plot(X, col="gray", xlab=expression(x[1]), ylab=expression(x[2]),
main="realisations from a\n truncated bivariate normal distribution")
points(X.trunc)
abline(h=0, lty=2, col="gray")
#legend("topleft", col=c("gray", "black")
# marginal density for x1 from realisations
plot(density(X.trunc[,1]), main=expression("marginal density for "*x[1]))
# one-dimensional marginal density for x1 using the formula
x <- seq(-5, 5, by=0.01)
fx <- dtmvnorm.marginal(x, n=1, mean=mu, sigma=sigma,
lower=c(-Inf,-Inf), upper=c(Inf,0))
lines(x, fx, lwd=2, col="red")
# marginal density for x2
plot(density(X.trunc[,2]), main=expression("marginal density for "*x[2]))
# one-dimensional marginal density for x2 using the formula
x <- seq(-5, 5, by=0.01)
fx <- dtmvnorm.marginal(x, n=2, mean=mu, sigma=sigma,
lower=c(-Inf,-Inf), upper=c(Inf,0))
lines(x, fx, lwd=2, col="blue")
#############################################
#
# Example 2 : truncated trivariate normal
#
#############################################
# parameters of the trivariate normal distribution
sigma = outer(1:3,1:3,pmin)
mu = c(0,0,0)
# sample from multivariate normal distribution
X = rmvnorm(2000, mu, sigma)
# truncation in x2 and x3 : x2 <= 0, x3 <= 0
X.trunc = X[X[,2]<=0 & X[,3]<=0,]
par(mfrow=c(2,3))
plot(X, col="gray", xlab=expression(x[1]), ylab=expression(x[2]),
main="realisations from a\n truncated trivariate normal distribution")
points(X.trunc, col="black")
abline(h=0, lty=2, col="gray")
plot(X[,2:3], col="gray", xlab=expression(x[2]), ylab=expression(x[3]),
main="realisations from a\n truncated trivariate normal distribution")
points(X.trunc[,2:3], col="black")
abline(h=0, lty=2, col="gray")
abline(v=0, lty=2, col="gray")
plot(X[,c(1,3)], col="gray", xlab=expression(x[1]), ylab=expression(x[3]),
main="realisations from a\n truncated trivariate normal distribution")
points(X.trunc[,c(1,3)], col="black")
abline(h=0, lty=2, col="gray")
# one-dimensional marginal density for x1 from realisations and formula
plot(density(X.trunc[,1]), main=expression("marginal density for "*x[1]))
x <- seq(-5, 5, by=0.01)
fx <- dtmvnorm.marginal(x, n=1, mean=mu, sigma=sigma,
lower=c(-Inf,-Inf,-Inf), upper=c(Inf,0,0))
lines(x, fx, lwd=2, col="red")
# one-dimensional marginal density for x2 from realisations and formula
plot(density(X.trunc[,2]), main=expression("marginal density for "*x[2]))
x <- seq(-5, 5, by=0.01)
fx <- dtmvnorm.marginal(x, n=2, mean=mu, sigma=sigma,
lower=c(-Inf,-Inf,-Inf), upper=c(Inf,0,0))
lines(x, fx, lwd=2, col="red")
# one-dimensional marginal density for x3 from realisations and formula
plot(density(X.trunc[,3]), main=expression("marginal density for "*x[3]))
x <- seq(-5, 5, by=0.01)
fx <- dtmvnorm.marginal(x, n=3, mean=mu, sigma=sigma,
lower=c(-Inf,-Inf,-Inf), upper=c(Inf,0,0))
lines(x, fx, lwd=2, col="red")