mulnos {timsac} | R Documentation |
Relative Power Contribution
Description
Compute relative power contributions in differential and integrated form, assuming the orthogonality between noise sources.
Usage
mulnos(y, max.order = NULL, control = NULL, manip = NULL, h)
Arguments
y |
a multivariate time series. |
max.order |
upper limit of model order. Default is
|
control |
controlled variables. Default is |
manip |
manipulated variables. Default number of manipulated variable is
' |
h |
specify frequencies |
Value
nperr |
a normalized prediction error covariance matrix. |
diffr |
differential relative power contribution. |
integr |
integrated relative power contribution. |
References
H.Akaike and T.Nakagawa (1988) Statistical Analysis and Control of Dynamic Systems. Kluwer Academic publishers.
Examples
ar <- array(0, dim = c(3,3,2))
ar[, , 1] <- matrix(c(0.4, 0, 0.3,
0.2, -0.1, -0.5,
0.3, 0.1, 0), nrow = 3, ncol = 3, byrow = TRUE)
ar[, , 2] <- matrix(c(0, -0.3, 0.5,
0.7, -0.4, 1,
0, -0.5, 0.3), nrow = 3, ncol = 3, byrow = TRUE)
x <- matrix(rnorm(200*3), nrow = 200, ncol = 3)
y <- mfilter(x, ar, "recursive")
mulnos(y, max.order = 10, h = 20)
[Package timsac version 1.3.8-4 Index]