markov {timsac}R Documentation

Maximum Likelihood Computation of Markovian Model

Description

Compute maximum likelihood estimates of Markovian model.

Usage

markov(y)

Arguments

y

a multivariate time series.

Details

This function is usually used with simcon.

Value

id

id[i]=1=1 means that the ii-th row of FF contains free parameters.

ir

ir[i] denotes the position of the last non-zero element within the ii-th row of FF.

ij

ij[i] denotes the position of the ii-th non-trivial row within FF.

ik

ik[i] denotes the number of free parameters within the ii-th non-trivial row of FF.

grad

gradient vector.

matFi

initial estimate of the transition matrix FF.

matF

transition matrix FF.

matG

input matrix GG.

davvar

DAVIDON variance.

arcoef

AR coefficient matrices. arcoef[i,j,k] shows the value of ii-th row, jj-th column, kk-th order.

impulse

impulse response matrices.

macoef

MA coefficient matrices. macoef[i,j,k] shows the value of ii-th row, jj-th column, kk-th order.

v

innovation variance.

aic

AIC.

References

H.Akaike, E.Arahata and T.Ozaki (1975) Computer Science Monograph, No.5, Timsac74, A Time Series Analysis and Control Program Package (1). The Institute of Statistical Mathematics.

Examples

x <- matrix(rnorm(1000*2), nrow = 1000, ncol = 2)
ma <- array(0, dim = c(2,2,2))
ma[, , 1] <- matrix(c( -1.0,  0.0,
                        0.0, -1.0), nrow = 2, ncol = 2, byrow = TRUE)
ma[, , 2] <- matrix(c( -0.2,  0.0,
                       -0.1, -0.3), nrow = 2, ncol = 2, byrow = TRUE)
y <- mfilter(x, ma, "convolution")
ar <- array(0, dim = c(2,2,3))
ar[, , 1] <- matrix(c( -1.0,  0.0,
                        0.0, -1.0), nrow = 2, ncol = 2, byrow = TRUE)
ar[, , 2] <- matrix(c( -0.5, -0.2,
                       -0.2, -0.5), nrow = 2, ncol = 2, byrow = TRUE)
ar[, , 3] <- matrix(c( -0.3, -0.05,
                       -0.1, -0.30), nrow = 2, ncol = 2, byrow = TRUE)
z <- mfilter(y, ar, "recursive")
markov(z)

[Package timsac version 1.3.8-4 Index]