| fpec {timsac} | R Documentation | 
AR model Fitting for Control
Description
Perform AR model fitting for control.
Usage
  fpec(y, max.order = NULL, control = NULL, manip = NULL)
Arguments
y | 
 a multivariate time series.  | 
max.order | 
 upper limit of model order. Default is
  | 
control | 
 controlled variables. Default is   | 
manip | 
 manipulated variables. Default number of manipulated variable is
  | 
Value
cov | 
 covariance matrix rearrangement.  | 
fpec | 
 FPEC (AR model fitting for control).  | 
rfpec | 
 RFPEC.  | 
aic | 
 AIC.  | 
ordermin | 
 order of minimum FPEC.  | 
fpecmin | 
 minimum FPEC.  | 
rfpecmin | 
 minimum RFPEC.  | 
aicmin | 
 minimum AIC.  | 
perr | 
 prediction error covariance matrix.  | 
arcoef | 
 a set of coefficient matrices.   | 
References
H.Akaike and T.Nakagawa (1988) Statistical Analysis and Control of Dynamic Systems. Kluwer Academic publishers.
Examples
ar <- array(0, dim = c(3,3,2))
ar[, , 1] <- matrix(c(0.4,  0,   0.3,
                      0.2, -0.1, -0.5,
                      0.3,  0.1, 0), nrow = 3, ncol = 3, byrow = TRUE)
ar[, , 2] <- matrix(c(0,  -0.3,  0.5,
                      0.7, -0.4,  1,
                      0,   -0.5,  0.3), nrow = 3, ncol = 3, byrow = TRUE)
x <- matrix(rnorm(200*3), nrow = 200, ncol = 3)
y <- mfilter(x, ar, "recursive")
fpec(y, max.order = 10)
[Package timsac version 1.3.8-4 Index]