unnest_ngrams {tidytext} | R Documentation |
Wrapper around unnest_tokens for n-grams
Description
These functions are wrappers around unnest_tokens( token = "ngrams" )
and unnest_tokens( token = "skip_ngrams" )
.
Usage
unnest_ngrams(
tbl,
output,
input,
n = 3L,
n_min = n,
ngram_delim = " ",
format = c("text", "man", "latex", "html", "xml"),
to_lower = TRUE,
drop = TRUE,
collapse = NULL,
...
)
unnest_skip_ngrams(
tbl,
output,
input,
n_min = 1,
n = 3,
k = 1,
format = c("text", "man", "latex", "html", "xml"),
to_lower = TRUE,
drop = TRUE,
collapse = NULL,
...
)
Arguments
tbl |
A data frame |
output |
Output column to be created as string or symbol. |
input |
Input column that gets split as string or symbol. The output/input arguments are passed by expression and support quasiquotation; you can unquote strings and symbols. |
n |
The number of words in the n-gram. This must be an integer greater than or equal to 1. |
n_min |
The minimum number of words in the n-gram. This must be an
integer greater than or equal to 1, and less than or equal to |
ngram_delim |
The separator between words in an n-gram. |
format |
Either "text", "man", "latex", "html", or "xml". When the format is "text", this function uses the tokenizers package. If not "text", this uses the hunspell tokenizer, and can tokenize only by "word". |
to_lower |
Whether to convert tokens to lowercase. |
drop |
Whether original input column should get dropped. Ignored if the original input and new output column have the same name. |
collapse |
A character vector of variables to collapse text across,
or For tokens like n-grams or sentences, text can be collapsed across rows
within variables specified by Grouping data specifies variables to collapse across in the same way as
|
... |
Extra arguments passed on to tokenizers |
k |
For the skip n-gram tokenizer, the maximum skip distance between
words. The function will compute all skip n-grams between |
See Also
Examples
library(dplyr)
library(janeaustenr)
d <- tibble(txt = prideprejudice)
d %>%
unnest_ngrams(word, txt, n = 2)
d %>%
unnest_skip_ngrams(word, txt, n = 3, k = 1)